Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 2

The positive muon (\(\mu^+\)), an unstable particle, lives on average 2.20 \(\times\) 10\(^{-6}\) s (measured in its own frame of reference) before decaying. (a) If such a particle is moving, with respect to the laboratory, with a speed of 0.900c, what average lifetime is measured in the laboratory? (b) What average distance, measured in the laboratory, does the particle move before decaying?

Problem 3

How fast must a rocket travel relative to the earth so that time in the rocket "slows down" to half its rate as measured by earthbased observers? Do present- day jet planes approach such speeds?

Problem 4

A spaceship flies past Mars with a speed of 0.985c relative to the surface of the planet. When the spaceship is directly overhead, a signal light on the Martian surface blinks on and then off. An observer on Mars measures that the signal light was on for 75.0 ms. (a) Does the observer on Mars or the pilot on the spaceship measure the proper time? (b) What is the duration of the light pulse measured by the pilot of the spaceship?

Problem 5

The negative pion (\(\pi^-\)) is an unstable particle with an average lifetime of 2.60 \(\times\) 10\(^{-8}\)s (measured in the rest frame of the pion). (a) If the pion is made to travel at very high speed relative to a laboratory, its average lifetime is measured in the laboratory to be 4.20 \(\times\) 10\(^{-7}\) s. Calculate the speed of the pion expressed as a fraction of c. (b) What distance, measured in the laboratory, does the pion travel during its average lifetime?

Problem 6

As you pilot your space utility vehicle at a constant speed toward the moon, a race pilot flies past you in her spaceracer at a constant speed of 0.800c relative to you. At the instant the spaceracer passes you, both of you start timers at zero. (a) At the instant when you measure that the spaceracer has traveled 1.20 \(\times\) 10\(^8\) m past you, what does the race pilot read on her timer? (b) When the race pilot reads the value calculated in part (a) on her timer, what does she measure to be your distance from her? (c) At the instant when the race pilot reads the value calculated in part (a) on her timer, what do you read on yours?

Problem 7

A spacecraft flies away from the earth with a speed of 4.80 \(\times\) 10\(^6\) m/s relative to the earth and then returns at the same speed. The spacecraft carries an atomic clock that has been carefully synchronized with an identical clock that remains at rest on earth. The spacecraft returns to its starting point 365 days (1 year) later, as measured by the clock that remained on earth. What is the difference in the elapsed times on the two clocks, measured in hours? Which clock, the one in the spacecraft or the one on earth, shows the shorter elapsed time?

Problem 8

An alien spacecraft is flying overhead at a great distance as you stand in your backyard. You see its searchlight blink on for 0.150 s. The first officer on the spacecraft measures that the searchlight is on for 12.0 ms. (a) Which of these two measured times is the proper time? (b) What is the speed of the spacecraft relative to the earth, expressed as a fraction of the speed of light \(c\)?

Problem 9

A spacecraft of the Trade Federation flies past the planet Coruscant at a speed of 0.600c. A scientist on Coruscant measures the length of the moving spacecraft to be 74.0 m. The spacecraft later lands on Coruscant, and the same scientist measures the length of the now stationary spacecraft. What value does she get?

Problem 10

A meter stick moves past you at great speed. Its motion relative to you is parallel to its long axis. If you measure the length of the moving meter stick to be 1.00 ft 11 ft = 0.3048 m2-for example, by comparing it to a 1-foot ruler that is at rest relative to you-at what speed is the meter stick moving relative to you?

Problem 11

Muons are unstable subatomic particles that decay to electrons with a mean lifetime of 2.2 \(\mu\)s. They are produced when cosmic rays bombard the upper atmosphere about 10 km above the earth's surface, and they travel very close to the speed of light. The problem we want to address is why we see any of them at the earth's surface. (a) What is the greatest distance a muon could travel during its 2.2 - \(\mu\)s lifetime? (b) According to your answer in part (a), it would seem that muons could never make it to the ground. But the 2.2- \(\mu\)s lifetime is measured in the frame of the muon, and muons are moving very fast. At a speed of 0.999c, what is the mean lifetime of a muon as measured by an observer at rest on the earth? How far would the muon travel in this time? Does this result explain why we find muons in cosmic rays? (c) From the point of view of the muon, it still lives for only 2.2 \(\mu\)s, so how does it make it to the ground? What is the thickness of the 10 km of atmosphere through which the muon must travel, as measured by the muon? Is it now clear how the muon is able to reach the ground?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks