Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The light from an iron arc includes many different wavelengths. Two of these are at \(\lambda\) = 587.9782 nm and \(\lambda\) = 587.8002 nm. You wish to resolve these spectral lines in first order using a grating 1.20 cm in length. What minimum number of slits per centimeter must the grating have?

Short Answer

Expert verified
The grating must have at least 2755 slits per centimeter.

Step by step solution

01

Understand the Problem

We need to resolve two spectral lines using a diffraction grating. Resolving power (R) of a grating helps to distinguish between close wavelengths. The formula for resolving power is \( R = \frac{\lambda}{\Delta \lambda} = mN \), where \( m \) is the order of the spectrum, \( N \) is the total number of slits, \( \lambda \) is one of the wavelengths, and \( \Delta \lambda \) is the difference in wavelengths.
02

Calculate Wavelength Difference

Identify the two wavelengths given: \( \lambda_1 = 587.9782 \) nm and \( \lambda_2 = 587.8002 \) nm. Calculate their difference: \( \Delta \lambda = \lambda_1 - \lambda_2 = 587.9782 - 587.8002 = 0.178 \) nm.
03

Set Up the Resolving Power Equation

We want to resolve these lines in first order, so \( m = 1 \). Substitute into the resolving power formula: \( R = \frac{587.9782}{0.178} = mN \), which simplifies to \( 587.9782 = N(0.178) \).
04

Solve for Total Number of Slits (N)

Calculate \( N \), the total number of slits: \( N = \frac{0.178}{0.178} \approx 3304.37 \). To resolve the lines, \( N \) must be an integer, so \( N = 3305 \).
05

Calculate Slits per Centimeter

The grating is 1.20 cm in length. Calculate the minimum number of slits per centimeter (d): \( d = \frac{N}{1.20} = \frac{3305}{1.20} \approx 2754.17 \) slits/cm.
06

Conclusion

Round up the value of slits per centimeter to ensure resolution: The grating must have a minimum of 2755 slits/cm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Resolving Power
The resolving power of a diffraction grating is a measure of its ability to separate closely spaced spectral lines, such as those produced by light passing through a slit. It is an essential concept in optics that can be understood through a simple formula:
  • \( R = \frac{\lambda}{\Delta \lambda} = mN \)
In this equation, \( R \) represents the resolving power, \( \lambda \) is the wavelength of light, \( \Delta \lambda \) is the smallest difference in wavelength that can be resolved, \( m \) is the order of the spectrum, and \( N \) is the total number of slits within the grating.
Resolving power is crucial in applications such as spectroscopy, where distinguishing between different substances relies on measuring specific wavelengths of light. The greater the resolving power, the more precise the separation of wavelengths. In practical terms, a higher \( N \) or using higher orders \( m \) can help increase the resolving power of the grating.
Wavelength Difference
The wavelength difference, symbolized as \( \Delta \lambda \), is the distinction in measurements between two close wavelengths. In the context of diffraction gratings and the exercise at hand, identifying \( \Delta \lambda \) is key to solving the problem of spectral line resolution.
For the given problem, the wavelengths are \( \lambda_1 = 587.9782 \) nm and \( \lambda_2 = 587.8002 \) nm. Calculating the difference involves subtracting these values:
  • \( \Delta \lambda = \lambda_1 - \lambda_2 = 0.178 \) nm
This small difference exemplifies how closely spaced spectral lines can be and why a precise resolving power is crucial for identification. When this value is plugged into the resolving power formula, it helps determine whether the grating can effectively distinguish between these two given wavelengths.
Spectral Lines
Spectral lines are unique lines that represent specific wavelengths of light emitted or absorbed by substances. They act like optical fingerprints for different elements, helping scientists and engineers identify the composition of an object.
These lines originate from electron transitions within atoms or molecules. When electrons jump between energy levels, they emit or absorb light with characteristic wavelengths.
In the given exercise, the task is to resolve two spectral lines with wavelengths of \( 587.9782 \) nm and \( 587.8002 \) nm. Due to their closeness in wavelength, high resolving power is required from the diffraction grating. Accurately resolving these lines allows us to differentiate between similar elements or compounds, providing valuable insights in areas such as astronomy and chemical analysis.
Slits Per Centimeter
The concept of slits per centimeter describes how many slits are present within a single centimeter length of a diffraction grating. This measurement is crucial as it directly affects the grating's resolving power. The more slits packed into a given length, the higher its ability to separate close spectral lines.
For instance, in the original exercise, resolving power determines the number of slits necessary to discern two close wavelengths. The total number of slits \( N \) calculated was around 3305, and the grating had a length of 1.20 cm. Thus, finding the slits per centimeter involves:
  • \( d = \frac{N}{1.20} \approx 2754.17 \) slits/cm
To ensure resolution, we round up to 2755 slits/cm. This high density of slits maximizes the grating's resolving capability, making it suitable for tasks like resolving closely spaced spectral lines.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Different isotopes of the same element emit light at slightly different wavelengths. A wavelength in the emission spectrum of a hydrogen atom is 656.45 nm; for deuterium, the corresponding wavelength is 656.27 nm. (a) What minimum number of slits is required to resolve these two wavelengths in second order? (b) If the grating has 500.00 slits/mm, find the angles and angular separation of these two wavelengths in the second order.

Visible light passes through a diffraction grating that has 900 slits/cm, and the interference pattern is observed on a screen that is 2.50 m from the grating. (a) Is the angular position of the first-order spectrum small enough for sin \(\theta \approx \theta\) to be a good approximation? (b) In the first- order spectrum, the maxima for two different wavelengths are separated on the screen by 3.00 mm. What is the difference in these wavelengths?

Parallel rays of green mercury light with a wavelength of 546 nm pass through a slit covering a lens with a focal length of 60.0 cm. In the focal plane of the lens, the distance from the central maximum to the first minimum is 8.65 mm. What is the width of the slit?

The Hubble Space Telescope has an aperture of 2.4 m and focuses visible light (380-750 nm). The Arecibo radio telescope in Puerto Rico is 305 m (1000 ft) in diameter (it is built in a mountain valley) and focuses radio waves of wavelength 75 cm. (a) Under optimal viewing conditions, what is the smallest crater that each of these telescopes could resolve on our moon? (b) If the Hubble Space Telescope were to be converted to surveillance use, what is the highest orbit above the surface of the earth it could have and still be able to resolve the license plate (not the letters, just the plate) of a car on the ground? Assume optimal viewing conditions, so that the resolution is diffraction limited.

Laser light of wavelength 632.8 nm falls normally on a slit that is 0.0250 mm wide. The transmitted light is viewed on a distant screen where the intensity at the center of the central bright fringe is 8.50 W/m\(^2\). (a) Find the maximum number of totally dark fringes on the screen, assuming the screen is large enough to show them all. (b) At what angle does the dark fringe that is most distant from the center occur? (c) What is the maximum intensity of the bright fringe that occurs immediately before the dark fringe in part (b)? Approximate the angle at which this fringe occurs by assuming it is midway between the angles to the dark fringes on either side of it.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free