Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The light from an iron arc includes many different wavelengths. Two of these are at \(\lambda\) = 587.9782 nm and \(\lambda\) = 587.8002 nm. You wish to resolve these spectral lines in first order using a grating 1.20 cm in length. What minimum number of slits per centimeter must the grating have?

Short Answer

Expert verified
The grating must have at least 2755 slits per centimeter.

Step by step solution

01

Understand the Problem

We need to resolve two spectral lines using a diffraction grating. Resolving power (R) of a grating helps to distinguish between close wavelengths. The formula for resolving power is \( R = \frac{\lambda}{\Delta \lambda} = mN \), where \( m \) is the order of the spectrum, \( N \) is the total number of slits, \( \lambda \) is one of the wavelengths, and \( \Delta \lambda \) is the difference in wavelengths.
02

Calculate Wavelength Difference

Identify the two wavelengths given: \( \lambda_1 = 587.9782 \) nm and \( \lambda_2 = 587.8002 \) nm. Calculate their difference: \( \Delta \lambda = \lambda_1 - \lambda_2 = 587.9782 - 587.8002 = 0.178 \) nm.
03

Set Up the Resolving Power Equation

We want to resolve these lines in first order, so \( m = 1 \). Substitute into the resolving power formula: \( R = \frac{587.9782}{0.178} = mN \), which simplifies to \( 587.9782 = N(0.178) \).
04

Solve for Total Number of Slits (N)

Calculate \( N \), the total number of slits: \( N = \frac{0.178}{0.178} \approx 3304.37 \). To resolve the lines, \( N \) must be an integer, so \( N = 3305 \).
05

Calculate Slits per Centimeter

The grating is 1.20 cm in length. Calculate the minimum number of slits per centimeter (d): \( d = \frac{N}{1.20} = \frac{3305}{1.20} \approx 2754.17 \) slits/cm.
06

Conclusion

Round up the value of slits per centimeter to ensure resolution: The grating must have a minimum of 2755 slits/cm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Resolving Power
The resolving power of a diffraction grating is a measure of its ability to separate closely spaced spectral lines, such as those produced by light passing through a slit. It is an essential concept in optics that can be understood through a simple formula:
  • \( R = \frac{\lambda}{\Delta \lambda} = mN \)
In this equation, \( R \) represents the resolving power, \( \lambda \) is the wavelength of light, \( \Delta \lambda \) is the smallest difference in wavelength that can be resolved, \( m \) is the order of the spectrum, and \( N \) is the total number of slits within the grating.
Resolving power is crucial in applications such as spectroscopy, where distinguishing between different substances relies on measuring specific wavelengths of light. The greater the resolving power, the more precise the separation of wavelengths. In practical terms, a higher \( N \) or using higher orders \( m \) can help increase the resolving power of the grating.
Wavelength Difference
The wavelength difference, symbolized as \( \Delta \lambda \), is the distinction in measurements between two close wavelengths. In the context of diffraction gratings and the exercise at hand, identifying \( \Delta \lambda \) is key to solving the problem of spectral line resolution.
For the given problem, the wavelengths are \( \lambda_1 = 587.9782 \) nm and \( \lambda_2 = 587.8002 \) nm. Calculating the difference involves subtracting these values:
  • \( \Delta \lambda = \lambda_1 - \lambda_2 = 0.178 \) nm
This small difference exemplifies how closely spaced spectral lines can be and why a precise resolving power is crucial for identification. When this value is plugged into the resolving power formula, it helps determine whether the grating can effectively distinguish between these two given wavelengths.
Spectral Lines
Spectral lines are unique lines that represent specific wavelengths of light emitted or absorbed by substances. They act like optical fingerprints for different elements, helping scientists and engineers identify the composition of an object.
These lines originate from electron transitions within atoms or molecules. When electrons jump between energy levels, they emit or absorb light with characteristic wavelengths.
In the given exercise, the task is to resolve two spectral lines with wavelengths of \( 587.9782 \) nm and \( 587.8002 \) nm. Due to their closeness in wavelength, high resolving power is required from the diffraction grating. Accurately resolving these lines allows us to differentiate between similar elements or compounds, providing valuable insights in areas such as astronomy and chemical analysis.
Slits Per Centimeter
The concept of slits per centimeter describes how many slits are present within a single centimeter length of a diffraction grating. This measurement is crucial as it directly affects the grating's resolving power. The more slits packed into a given length, the higher its ability to separate close spectral lines.
For instance, in the original exercise, resolving power determines the number of slits necessary to discern two close wavelengths. The total number of slits \( N \) calculated was around 3305, and the grating had a length of 1.20 cm. Thus, finding the slits per centimeter involves:
  • \( d = \frac{N}{1.20} \approx 2754.17 \) slits/cm
To ensure resolution, we round up to 2755 slits/cm. This high density of slits maximizes the grating's resolving capability, making it suitable for tasks like resolving closely spaced spectral lines.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

It has been proposed to use an array of infrared telescopes spread over thousands of kilometers of space to observe planets orbiting other stars. Consider such an array that has an effective diameter of 6000 km and observes infrared radiation at a wavelength of 10 \(\mu\)m. If it is used to observe a planet orbiting the star 70 Virginis, which is 59 light-years from our solar system, what is the size of the smallest details that the array might resolve on the planet? How does this compare to the diameter of the planet, which is assumed to be similar to that of Jupiter (1.40 \(\times\) 10\(^{5}\) km)? (Although the planet of 70 Virginis is thought to be at least 6.6 times more massive than Jupiter, its radius is probably not too different from that of Jupiter. Such large planets are thought to be composed primarily of gases, not rocky material, and hence can be greatly compressed by the mutual gravitational attraction of different parts of the planet.)

The wavelength range of the visible spectrum is approximately 380-750 nm. White light falls at normal incidence on a diffraction grating that has 350 slits/mm. Find the angular width of the visible spectrum in (a) the first order and (b) the third order. (\(Note\): An advantage of working in higher orders is the greater angular spread and better resolution. A disadvantage is the overlapping of different orders, as shown in Example 36.4.)

If you can read the bottom row of your doctor's eye chart, your eye has a resolving power of 1 arcminute, equal to \(1\over{60}\) degree. If this resolving power is diffraction limited, to what effective diameter of your eye's optical system does this correspond? Use Rayleigh's criterion and assume \(\lambda\) = 550 nm.

The maximum resolution of the eye depends on the diameter of the opening of the pupil (a diffraction effect) and the size of the retinal cells. The size of the retinal cells (about 5.0 \(\mu\)m in diameter) limits the size of an object at the near point (25 cm) of the eye to a height of about 50 \(\mu\)m. (To get a reasonable estimate without having to go through complicated calculations, we shall ignore the effect of the fluid in the eye.) (a) Given that the diameter of the human pupil is about 2.0 mm, does the Rayleigh criterion allow us to resolve a 50-\(\mu\)m- tall object at 25 cm from the eye with light of wavelength 550 nm? (b) According to the Rayleigh criterion, what is the shortest object we could resolve at the 25-cm near point with light of wavelength 550 nm? (c) What angle would the object in part (b) subtend at the eye? Express your answer in minutes (60 min = 1\(^\circ\)), and compare it with the experimental value of about 1 min. (d) Which effect is more important in limiting the resolution of our eyes: diffraction or the size of the retinal cells?

Your physics study partner tells you that the width of the central bright band in a single-slit diffraction pattern is inversely proportional to the width of the slit. This means that the width of the central maximum increases when the width of the slit decreases. The claim seems counterintuitive to you, so you make measurements to test it. You shine monochromatic laser light with wavelength \(\lambda\) onto a very narrow slit of width \(a\) and measure the width \(w\) of the central maximum in the diffraction pattern that is produced on a screen 1.50 m from the slit. (By "width," you mean the distance on the screen between the two minima on either side of the central maximum.) Your measurements are given in the table. (a) If \(w\) is inversely proportional to \(a\), then the product \(aw\) is constant, independent of \(a\). For the data in the table, graph \(aw\) versus \(a\). Explain why \(aw\) is not constant for smaller values of \(a\). (b) Use your graph in part (a) to calculate the wavelength \(\lambda\) of the laser light. (c) What is the angular position of the first minimum in the diffraction pattern for (i) \(a\) = 0.78 \(\mu\)m and (ii) \(a\) = 15.60 \(\mu\)m?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free