Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 37

Eyeglass lenses can be coated on the \(inner\) surfaces to reduce the reflection of stray light to the eye. If the lenses are medium flint glass of refractive index 1.62 and the coating is fluorite of refractive index 1.432, (a) what minimum thickness of film is needed on the lenses to cancel light of wavelength 550 nm reflected toward the eye at normal incidence? (b) Will any other wavelengths of visible light be cancelled or enhanced in the reflected light?

Problem 38

After an eye examination, you put some eyedrops on your sensitive eyes. The cornea (the front part of the eye) has an index of refraction of 1.38, while the eyedrops have a refractive index of 1.45. After you put in the drops, your friends notice that your eyes look red, because red light of wavelength 600 nm has been reinforced in the reflected light. (a) What is the minimum thickness of the film of eyedrops on your cornea? (b) Will any other wavelengths of visible light be reinforced in the reflected light? Will any be cancelled? (c) Suppose you had contact lenses, so that the eyedrops went on them instead of on your corneas. If the refractive index of the lens material is 1.50 and the layer of eyedrops has the same thickness as in part (a), what wavelengths of visible light will be reinforced? What wavelengths will be cancelled?

Problem 39

Two flat plates of glass with parallel faces are on a table, one plate on the other. Each plate is 11.0 cm long and has a refractive index of 1.55. A very thin sheet of metal foil is inserted under the end of the upper plate to raise it slightly at that end, in a manner similar to that discussed in Example 35.4. When you view the glass plates from above with reflected white light, you observe that, at 1.15 mm from the line where the sheets are in contact, the violet light of wavelength 400.0 nm is enhanced in this reflected light, but no visible light is enhanced closer to the line of contact. (a) How far from the line of contact will green light (of wavelength 550.0 nm) and orange light (of wavelength 600.0 nm) first be enhanced? (b) How far from the line of contact will the violet, green, and orange light again be enhanced in the reflected light? (c) How thick is the metal foil holding the ends of the plates apart?

Problem 41

Suppose you illuminate two thin slits by monochromatic coherent light in air and find that they produce their first interference \(minima\) at \(\pm35.20^\circ\) on either side of the central bright spot. You then immerse these slits in a transparent liquid and illuminate them with the same light. Now you find that the first minima occur at \(\pm19.46^\circ\) instead. What is the index of refraction of this liquid?

Problem 44

Two speakers \(A\) and \(B\) are 3.50 m apart, and each one is emitting a frequency of 444 Hz. However, because of signal delays in the cables, speaker \(A\) is one-fourth of a period ahead of speaker \(B\). For points far from the speakers, find all the angles relative to the centerline (Fig. P35.44) at which the sound from these speakers cancels. Include angles on both sides of the centerline. The speed of sound is 340 m/s.

Problem 45

A thin uniform film of refractive index 1.750 is placed on a sheet of glass of refractive index 1.50. At room temperature (20.0\(^\circ\)C), this film is just thick enough for light with wavelength 582.4 nm reflected off the top of the film to be cancelled by light reflected from the top of the glass. After the glass is placed in an oven and slowly heated to 170\(^\circ\)C, you find that the film cancels reflected light with wavelength 588.5 nm. What is the coefficient of linear expansion of the film? (Ignore any changes in the refractive index of the film due to the temperature change.)

Problem 47

White light reflects at normal incidence from the top and bottom surfaces of a glass plate (\(n\) = 1.52). There is air above and below the plate. Constructive interference is observed for light whose wavelength in air is 477.0 nm. What is the thickness of the plate if the next longer wavelength for which there is constructive interference is 540.6 nm?

Problem 48

Laser light of wavelength 510 nm is traveling in air and shines at normal incidence onto the flat end of a transparent plastic rod that has \(n\) = 1.30. The end of the rod has a thin coating of a transparent material that has refractive index 1.65. What is the minimum (nonzero) thickness of the coating (a) for which there is maximum transmission of the light into the rod; (b) for which transmission into the rod is minimized?

Problem 49

Red light with wavelength 700 nm is passed through a two-slit apparatus. At the same time, monochromatic visible light with another wavelength passes through the same apparatus. As a result, most of the pattern that appears on the screen is a mixture of two colors; however, the center of the third bright fringe (\(m\) = 32) of the red light appears pure red, with none of the other color. What are the possible wavelengths of the second type of visible light? Do you need to know the slit spacing to answer this question? Why or why not?

Problem 51

After a laser beam passes through two thin parallel slits, the first completely dark fringes occur at \(\pm\)19.0\(^\circ\) with the original direction of the beam, as viewed on a screen far from the slits. (a) What is the ratio of the distance between the slits to the wavelength of the light illuminating the slits? (b) What is the smallest angle, relative to the original direction of the laser beam, at which the intensity of the light is \(1 \over 10\) the maximum intensity on the screen?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks