Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 2

The vitreous humor, a transparent, gelatinous fluid that fills most of the eyeball, has an index of refraction of 1.34. Visible light ranges in wavelength from 380 nm (violet) to 750 nm (red), as measured in air. This light travels through the vitreous humor and strikes the rods and cones at the surface of the retina. What are the ranges of (a) the wavelength, (b) the frequency, and (c) the speed of the light just as it approaches the retina within the vitreous humor?

Problem 3

A beam of light has a wavelength of 650 nm in vacuum. (a) What is the speed of this light in a liquid whose index of refraction at this wavelength is 1.47? (b) What is the wavelength of these waves in the liquid?

Problem 4

Light with a frequency of \(5.80 \times 10^{14}\) Hz travels in a block of glass that has an index of refraction of 1.52. What is the wavelength of the light (a) in vacuum and (b) in the glass?

Problem 5

A light beam travels at \(1.94 \times 10^8\) m/s in quartz. The wavelength of the light in quartz is 355 nm. (a) What is the index of refraction of quartz at this wavelength? (b) If this same light travels through air, what is its wavelength there?

Problem 7

A parallel beam of light in air makes an angle of 47.5\(^\circ\) with the surface of a glass plate having a refractive index of 1.66. (a) What is the angle between the reflected part of the beam and the surface of the glass? (b) What is the angle between the refracted beam and the surface of the glass?

Problem 9

Light traveling in air is incident on the surface of a block of plastic at an angle of 62.7\(^\circ\) to the normal and is bent so that it makes a 48.1\(^\circ\) angle with the normal in the plastic. Find the speed of light in the plastic.

Problem 10

(a) A tank containing methanol has walls 2.50 cm thick made of glass of refractive index 1.550. Light from the outside air strikes the glass at a 41.3\(^\circ\) angle with the normal to the glass. Find the angle the light makes with the normal in the methanol. (b) The tank is emptied and refilled with an unknown liquid. If light incident at the same angle as in part (a) enters the liquid in the tank at an angle of 20.2\(^\circ\) from the normal, what is the refractive index of the unknown liquid?

Problem 12

A horizontal, parallelsided plate of glass having a refractive index of 1.52 is in contact with the surface of water in a tank. A ray coming from above in air makes an angle of incidence of 35.0\(^\circ\) with the normal to the top surface of the glass. (a) What angle does the ray refracted into the water make with the normal to the surface? (b) What is the dependence of this angle on the refractive index of the glass?

Problem 13

A ray of light is incident on a plane surface separating two sheets of glass with refractive indexes 1.70 and 1.58. The angle of incidence is 62.0\(^\circ\), and the ray originates in the glass with \(n\) = 1.70. Compute the angle of refraction.

Problem 14

A ray of light traveling in water is incident on an interface with a flat piece of glass. The wavelength of the light in the water is 726 nm, and its wavelength in the glass is 544 nm. If the ray in water makes an angle of 56.0\(^\circ\) with respect to the normal to the interface, what angle does the refracted ray in the glass make with respect to the normal?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks