Problem 12
A rookie quarterback throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore air resistance. (a) How much time is required for the football to reach the highest point of the trajectory? (b) How high is this point? (c) How much time (after it is thrown) is required for the football to return to its original level? How does this compare with the time calculated in part (a)? (d) How far has the football traveled horizontally during this time? (e) Draw \(x-t, y-t, v_x-t\), and \(v_y-t\) graphs for the motion.
Problem 13
During a storm, a car traveling on a level horizontal road comes upon a bridge that has washed out. The driver must get to the other side, so he decides to try leaping the river with his car. The side of the road the car is on is 21.3 m above the river, while the opposite side is only 1.8 m above the river. The river itself is a raging torrent 48.0 m wide. (a) How fast should the car be traveling at the time it leaves the road in order just to clear the river and land safely on the opposite side? (b) What is the speed of the car just before it lands on the other side?
Problem 14
The froghopper, \(Philaenus\) \(spumarius\), holds the world record for insect jumps. When leaping at an angle of 58.0\(^\circ\) above the horizontal, some of the tiny critters have reached a maximum height of 58.7 cm above the level ground. (See \(Nature\), Vol. 424, July 31, 2003, p. 509.) (a) What was the takeoff speed for such a leap? (b) What horizontal distance did the froghopper cover for this world-record leap?
Problem 15
Inside a starship at rest on the earth, a ball rolls off the top of a horizontal table and lands a distance \(D\) from the foot of the table. This starship now lands on the unexplored Planet \(X\). The commander, Captain Curious, rolls the same ball off the same table with the same initial speed as on earth and finds that it lands a distance 2.76\(D\) from the foot of the table. What is the acceleration due to gravity on Planet \(X\)?
Problem 16
On level ground a shell is fired with an initial velocity of 40.0 m/s at 60.0\(^\circ\) above the horizontal and feels no appreciable air resistance. (a) Find the horizontal and vertical components of the shell's initial velocity. (b) How long does it take the shell to reach its highest point? (c) Find its maximum height above the ground. (d) How far from its firing point does the shell land? (e) At its highest point, find the horizontal and vertical components of its acceleration and velocity.
Problem 17
A major leaguer hits a baseball so that it leaves the bat at a speed of 30.0 m/s and at an angle of 36.9\(^\circ\) above the horizontal. Ignore air resistance. (a) At what \(two\) times is the baseball at a height of 10.0 m above the point at which it left the bat? (b) Calculate the horizontal and vertical components of the baseball's velocity at each of the two times calculated in part (a). (c) What are the magnitude and direction of the baseball's velocity when it returns to the level at which it left the bat?
Problem 20
Firemen use a high-pressure hose to shoot a stream of water at a burning building. The water has a speed of 25.0 m/s as it leaves the end of the hose and then exhibits projectile motion. The firemen adjust the angle of elevation \(\alpha\) of the hose until the water takes 3.00 s to reach a building 45.0 m away. Ignore air resistance; assume that the end of the hose is at ground level. (a) Find \(\alpha\). (b) Find the speed and acceleration of the water at the highest point in its trajectory. (c) How high above the ground does the water strike the building, and how fast is it moving just before it hits the building?
Problem 21
A man stands on the roof of a 15.0-m-tall building and throws a rock with a speed of 30.0 m/s at an angle of 33.0\(^\circ\) above the horizontal. Ignore air resistance. Calculate (a) the maximum height above the roof that the rock reaches; (b) the speed of the rock just before it strikes the ground; and (c) the horizontal range from the base of the building to the point where the rock strikes the ground. (d) Draw \(x-t, y-t, v_x-t\), and \(v_y-t\) graphs for the motion.
Problem 22
A 124-kg balloon carrying a 22-kg basket is descending with a constant downward velocity of 20.0 m/s. A 1.0-kg stone is thrown from the basket with an initial velocity of 15.0 m/s perpendicular to the path of the descending balloon, as measured relative to a person at rest in the basket. That person sees the stone hit the ground 5.00 s after it was thrown. Assume that the balloon continues its downward descent with the same constant speed of 20.0 m/s. (a) How high is the balloon when the rock is thrown? (b) How high is the balloon when the rock hits the ground? (c) At the instant the rock hits the ground, how far is it from the basket? (d) Just before the rock hits the ground, find its horizontal and vertical velocity components as measured by an observer (i) at rest in the basket and (ii) at rest on the ground.
Problem 23
The earth has a radius of 6380 km and turns around once on its axis in 24 h. (a) What is the radial acceleration of an object at the earth's equator? Give your answer in m/s\(^2\) and as a fraction of \(g\). (b) If \(a_{rad}\) at the equator is greater than \(g\), objects will fly off the earth's surface and into space. (We will see the reason for this in Chapter 5.) What would the period of the earth's rotation have to be for this to occur?