Chapter 27: Problem 77
A circular loop of wire with area \(A\) lies in the \(xy\)-plane. As viewed along the \(z\)-axis looking in the -\(z\)-direction toward the origin, a current \(I\) is circulating clockwise around the loop. The torque produced by an external magnetic field \(\overrightarrow{B}\) is given by \(\vec{\tau}\) = D(4\(\hat{\imath}\) - 3\(\hat{\jmath}\)), where \(D\) is a positive constant, and for this orientation of the loop the magnetic potential energy \(U = -\vec{\mu}\) \(\cdot\) \(\overrightarrow{B}\) is negative. The magnitude of the magnetic field is \(B_0 = 13D/IA\). (a) Determine the vector magnetic moment of the current loop. (b) Determine the components \(B_x\), \(B_y\), and \(B_z\) of \(\overrightarrow{B}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.