Problem 1
A particle with a charge of -1.24 \(\times\) 10\(^{-8}\) C is moving with instantaneous velocity \(\vec{v} =\) 14.19 \(\times\) 10\(^4\) m/s)\(\hat{\imath}\) + (-3.85 \(\times\) 10\(^4\) m/s)\(\hat{\jmath}\). What is the force exerted on this particle by a magnetic field (a) \(\overrightarrow{B} =\) (1.40 T)\(\hat{\imath}\) and (b) \(\overrightarrow{B} =\) (1.40 T) \(\hat{k}\) ?
Problem 2
A particle of mass 0.195 g carries a charge of -2.50 \(\times\) 10\(^{-8}\) C. The particle is given an initial horizontal velocity that is due north and has magnitude 4.00 \(\times\) 10\(^4\) m/s. What are the magnitude and direction of the minimum magnetic field that will keep the particle moving in the earth's gravitational field in the same horizontal, northward direction?
Problem 5
An electron experiences a magnetic force of magnitude 4.60 \(\times\) 10\(^{-15}\) N when moving at an angle of 60.0\(^\circ\) with respect to a magnetic field of magnitude 3.50 \(\times\) 10\(^{-3}\) T. Find the speed of the electron.
Problem 6
An electron moves at 1.40 \(\times\) 10\(^6\) m/s through a region in which there is a magnetic field of unspecified direction and magnitude 7.40 \(\times\) 10\(^{-2}\) T. (a) What are the largest and smallest possible magnitudes of the acceleration of the electron due to the magnetic field? (b) If the actual acceleration of the electron is one-fourth of the largest magnitude in part (a), what is the angle between the electron velocity and the magnetic field?
Problem 7
A particle with charge 7.80 \(\mu\)C is moving with velocity \(\vec{v} =\) - 13.80 \(\times\) 103m/s\(\hat{\jmath}\). The magnetic force on the particle is measured to be \(\overrightarrow{F} =\) (7.60 \(\times\) 10\(^{-3}\) N)\(\hat{\imath}\) - (5.20 \(\times\) 10\(^{-3}\) N)\(\hat{k}\). (a) Calculate all the components of the magnetic field you can from this information. (b) Are there components of the magnetic field that are not determined by the measurement of the force? Explain. (c) Calculate the scalar product \(\overrightarrow{B}\) \(\cdot\) \(\overrightarrow{F}\). What is the angle between \(\overrightarrow{B}\) and \(\overrightarrow{F}\)?
Problem 8
A particle with charge -5.60 nC is moving in a uniform magnetic field \(\overrightarrow{B} =\) -(1.25 T)\(\hat{k}\). The magnetic force on the particle is measured to be \(\overrightarrow{F} =\) -(3.40 \(\times\) 10\(^{-7}\)N)\(\hat{\imath}\) + (7.40 \(\times\) 10\(^{-7}\)N)\(\hat{\jmath}\). (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there components of the velocity that are not determined by the measurement of the force? Explain. (c) Calculate the scalar product \(\vec{v}\) \(\cdot\) \(\overrightarrow{F}\). What is the angle between \(\vec{v}\) and \(\overrightarrow{F}\)?
Problem 9
A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.50 km/s in the \(+x\)-direction experiences a force of 2.25 \(\times\) 10\(^{-16}\) N in the \(+y\)-direction, and an electron moving at 4.75 km/s in the \(-z\)-direction experiences a force of 8.50 \(\times\) 10-16 N in the \(+y\)-direction. (a) What are the magnitude and direction of the magnetic field? (b) What are the magnitude and direction of the magnetic force on an electron moving in the \(-y\)-direction at 3.20 km/s?
Problem 10
A flat, square surface with side length 3.40 cm is in the xy-plane at \(z =\) 0. Calculate the magnitude of the flux through this surface produced by a magnetic field \(\overrightarrow{B} =\) (0.200 T)\(\hat{\imath}\) + (0.300 T)\(\hat{\jmath}\) - (0.500 T)\(\hat{k}\).
Problem 11
A circular area with a radius of 6.50 cm lies in the \(xy\)-plane. What is the magnitude of the magnetic flux through this circle due to a uniform magnetic field \(B =\) 0.230 T (a) in the \(+z\)-direction; (b) at an angle of 53.1\(^\circ\) from the \(+z\)-direction; (c) in the \(+y\)-direction?
Problem 12
A horizontal rectangular surface has dimensions 2.80 cm by 3.20 cm and is in a uniform magnetic field that is directed at an angle of 30.0\(^\circ\) above the horizontal. What must the magnitude of the magnetic field be to produce a flux of 3.10 \(\times\) 10\(^{-4}\) Wb through the surface?