Problem 3
A resistor with \(R_1 =\) 25.0 \(\Omega\) is connected to a battery that has negligible internal resistance and electrical energy is dissipated by \(R_1\) at a rate of 36.0 W. If a second resistor with \(R_2 =\) 15.0 \(\Omega\) is connected in series with \(R_1\), what is the total rate at which electrical energy is dissipated by the two resistors?
Problem 4
A 42-\(\Omega\) resistor and a 20\(\Omega\) resistor are connected in parallel, and the combination is connected across a 240-V dc line. (a) What is the resistance of the parallel combination? (b) What is the total current through the parallel combination? (c) What is the current through each resistor?
Problem 8
Three resistors having resistances of 1.60 \(\Omega\), 2.40 \(\Omega\), and 4.80 \(\Omega\) are connected in parallel to a 28.0-V battery that has negligible internal resistance. Find (a) the equivalent resistance of the combination; (b) the current in each resistor; (c) the total current through the battery; (d) the voltage across each resistor; (e) the power dissipated in each resistor. (f) Which resistor dissipates the most power: the one with the greatest resistance or the least resistance? Explain why this should be.
Problem 10
The \(power\) \(rating\) of a resistor is the maximum power the resistor can safely dissipate without too great a rise in temperature and hence damage to the resistor. (a) If the power rating of a 15-k \(\Omega\) resistor is 5.0 W, what is the maximum allowable potential difference across the terminals of the resistor? (b) A 9.0-k \(\Omega\) resistor is to be connected across a 120-V potential difference. What power rating is required? (c) A 100.0-\(\Omega\) and a 150.0-\(\Omega\) resistor, both rated at 2.00 W, are connected in series across a variable potential difference. What is the greatest this potential difference can be without overheating either resistor, and what is the rate of heat generated in each resistor under these conditions?
Problem 21
Two light bulbs have constant resistances of 400 \(\Omega\) and 800 \(\Omega\). If the two light bulbs are connected in series across a 120-V line, find (a) the current through each bulb; (b) the power dissipated in each bulb; (c) the total power dissipated in both bulbs. The two light bulbs are now connected in parallel across the 120-V line. Find (d) the current through each bulb; (e) the power dissipated in each bulb; (f) the total power dissipated in both bulbs. (g) In each situation, which of the two bulbs glows the brightest? (h) In which situation is there a greater total light output from both bulbs combined?
Problem 22
A 60-W, 120-V light bulb and a 200-W, 120-V light bulb are connected in series across a 240-V line. Assume that the resistance of each bulb does not vary with current. (\(Note:\) This description of a light bulb gives the power it dissipates when connected to the stated potential difference; that is, a 25-W, 120-V light bulb dissipates 25 W when connected to a 120-V line.) (a) Find the current through the bulbs. (b) Find the power dissipated in each bulb. (c) One bulb burns out very quickly. Which one? Why?
Problem 37
A circuit consists of a series combination of 6.00-k\(\Omega\) and 5.00-k\(\Omega\) resistors connected across a 50.0-V battery having negligible internal resistance. You want to measure the true potential difference (that is, the potential difference without the meter present) across the 5.00-k\(\Omega\) resistor using a voltmeter having an internal resistance of 10.0 k\(\Omega\). (a) What potential difference does the voltmeter measure across the 5.00-k\(\Omega\) resistor? (b) What is the \(true\) potential difference across this resistor when the meter is not present? (c) By what percentage is the voltmeter reading in error from the true potential difference?
Problem 38
A galvanometer having a resistance of 25.0 \(\Omega\) has a 1.00-\(\Omega\) shunt resistance installed to convert it to an ammeter. It is then used to measure the current in a circuit consisting of a 15.0-\(\Omega\) resistor connected across the terminals of a 25.0-V battery having no appreciable internal resistance. (a) What current does the ammeter measure? (b) What should be the \(true\) current in the circuit (that is, the current without the ammeter present)? (c) By what percentage is the ammeter reading in error from the \(true\) current?
Problem 39
A capacitor is charged to a potential of 12.0 V and is then connected to a voltmeter having an internal resistance of 3.40 M\(\Omega\). After a time of 4.00 s the voltmeter reads 3.0 V. What are (a) the capacitance and (b) the time constant of the circuit?
Problem 41
A 4.60-\(\mu\)F capacitor that is initially uncharged is connected in series with a 7.50-k\(\Omega\) resistor and an emf source with \(\varepsilon =\) 245 V and negligible internal resistance. Just after the circuit is completed, what are (a) the voltage drop across the capacitor; (b) the voltage drop across the resistor; (c) the charge on the capacitor; (d) the current through the resistor? (e) A long time after the circuit is completed (after many time constants) what are the values of the quantities in parts (a)-(d)?