Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 53

On your first day at work as an electrical technician, you are asked to determine the resistance per meter of a long piece of wire. The company you work for is poorly equipped. You find a battery, a voltmeter, and an ammeter, but no meter for directly measuring resistance (an ohmmeter). You put the leads from the voltmeter across the terminals of the battery, and the meter reads 12.6 V. You cut off a 20.0-m length of wire and connect it to the battery, with an ammeter in series with it to measure the current in the wire. The ammeter reads 7.00 A. You then cut off a 40.0-m length of wire and connect it to the battery, again with the ammeter in series to measure the current. The ammeter reads 4.20 A. Even though the equipment you have available to you is limited, your boss assures you of its high quality: The ammeter has very small resistance, and the voltmeter has very large resistance. What is the resistance of 1 meter of wire?

Problem 54

A 2.0-m length of wire is made by welding the end of a 120-cm-long silver wire to the end of an 80-cm-long copper wire. Each piece of wire is 0.60 mm in diameter. The wire is at room temperature, so the resistivities are as given in Table 25.1. A potential difference of 9.0 V is maintained between the ends of the 2.0-m composite wire. What is (a) the current in the copper section; (b) the current in the silver section; (c) the magnitude of E in the copper; (d) the magnitude of E in the silver; (e) the potential difference between the ends of the silver section of wire?

Problem 55

A 3.00-m length of copper wire at 20C has a 1.20-mlong section with diameter 1.60 mm and a 1.80-m-long section with diameter 0.80 mm. There is a current of 2.5 mA in the 1.60- mm-diameter section. (a) What is the current in the 0.80-mmdiameter section? (b) What is the magnitude of E in the 1.60-mm-diameter section? (c) What is the magnitude of E in the 0.80-mm-diameter section? (d) What is the potential difference between the ends of the 3.00-m length of wire?

Problem 58

A resistor with resistance R is connected to a battery that has emf 12.0 V and internal resistance r= 0.40Ω. For what two values of R will the power dissipated in the resistor be 80.0 W?

Problem 60

The region between two concentric conducting spheres with radii a and b is filled with a conducting material with resistivity ρ. (a) Show that the resistance between the spheres is given by R=ρ4π(1a1b)(b) Derive an expression for the current density as a function of radius, in terms of the potential difference Vab between the spheres. (c) Show that the result in part (a) reduces to Eq. (25.10) when the separation L=ba between the spheres is small.

Problem 61

The potential difference across the terminals of a battery is 8.40 V when there is a current of 1.50 A in the battery from the negative to the positive terminal. When the current is 3.50 A in the reverse direction, the potential difference becomes 10.20 V. (a) What is the internal resistance of the battery? (b) What is the emf of the battery?

Problem 63

The average bulk resistivity of the human body (apart from surface resistance of the skin) is about 5.0Ω m. The conducting path between the hands can be represented approximately as a cylinder 1.6 m long and 0.10 m in diameter. The skin resistance can be made negligible by soaking the hands in salt water. (a) What is the resistance between the hands if the skin resistance is negligible? (b) What potential difference between the hands is needed for a lethal shock current of 100 mA? (Note that your result shows that small potential differences produce dangerous currents when the skin is damp.) (c) With the current in part (b), what power is dissipated in the body?

Problem 64

A person with body resistance between his hands of 10 kΩ accidentally grasps the terminals of a 14-kV power supply. (a) If the internal resistance of the power supply is 2000 Ω, what is the current through the person's body? (b) What is the power dissipated in his body? (c) If the power supply is to be made safe by increasing its internal resistance, what should the internal resistance be for the maximum current in the above situation to be 1.00 mA or less?

Problem 65

A typical cost for electrical power is $0.120 per kilowatthour. (a) Some people leave their porch light on all the time. What is the yearly cost to keep a 75-W bulb burning day and night? (b) Suppose your refrigerator uses 400 W of power when it's running, and it runs 8 hours a day. What is the yearly cost of operating your refrigerator?

Problem 67

Unlike the idealized ammeter described in Section 25.4, any real ammeter has a nonzero resistance. (a) An ammeter with resistance RA is connected in series with a resistor R and a battery of emf ε and internal resistance r. The current measured by the ammeter is IA. Find the current through the circuit if the ammeter is removed so that the battery and the resistor form a complete circuit. Express your answer in terms of IA, r, RA, and R. The more "ideal" the ammeter, the smaller the difference between this current and the current IA. (b) If R = 3.80 Ω, ε = 7.50 V, and r = 0.45 Ω, find the maximum value of the ammeter resistance RA so that IA is within 1.0% of the current in the circuit when the ammeter is absent. (c) Explain why your answer in part (b) represents a maximum value.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks