Problem 1
The plates of a parallel-plate capacitor are 2.50 mm apart, and each carries a charge of magnitude 80.0 nC. The plates are in vacuum. The electric field between the plates has a magnitude of 4.00\(\times\) 10\(^6\) V/m. What is (a) the potential difference between the plates; (b) the area of each plate; (c) the capacitance?
Problem 2
The plates of a parallel-plate capacitor are 3.28 mm apart, and each has an area of 9.82 cm\(^2\). Each plate carries a charge of magnitude 4.35 \(\times\) 10\(^{-8}\) C. The plates are in vacuum. What is (a) the capacitance; (b) the potential difference between the plates; (c) the magnitude of the electric field between the plates?
Problem 3
A parallel-plate air capacitor of capacitance 245 pF has a charge of magnitude 0.148 \(\mu\)C on each plate. The plates are 0.328 mm apart. (a) What is the potential difference between the plates? (b) What is the area of each plate? (c) What is the electricfield magnitude between the plates? (d) What is the surface charge density on each plate?
Problem 5
A 10.0- \(\mu\)F parallel-plate capacitor with circular plates is connected to a 12.0-V battery. (a) What is the charge on each plate? (b) How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? (c) How much charge would be on the plates if the capacitor were connected to the 12.0-V battery after the radius of each plate was doubled without changing their separation?
Problem 6
A 5.00\(\mu\)F parallel-plate capacitor is connected to a 12.0-V battery. After the capacitor is fully charged, the battery is disconnected without loss of any of the charge on the plates. (a) A voltmeter is connected across the two plates without discharging them. What does it read? (b) What would the voltmeter read if (i) the plate separation were doubled; (ii) the radius of each plate were doubled but their separation was unchanged?
Problem 7
A parallel-plate air capacitor is to store charge of magnitude 240.0 pC on each plate when the potential difference between the plates is 42.0 V. (a) If the area of each plate is 6.80 cm\(^2\), what is the separation between the plates? (b) If the separation between the two plates is double the value calculated in part (a), what potential difference is required for the capacitor to store charge of magnitude 240.0 pC on each plate?
Problem 8
A 5.00-pF, parallel-plate, air-filled capacitor with circular plates is to be used in a circuit in which it will be subjected to potentials of up to 1.00 \(\times\) 10\(^2\) V. The electric field between the plates is to be no greater than 1.00 \(\times\) 10\(^4\) N/C. As a budding electrical engineer for Live-Wire Electronics, your tasks are to (a) design the capacitor by finding what its physical dimensions and separation must be; (b) find the maximum charge these plates can hold.
Problem 9
A capacitor is made from two hollow, coaxial, iron cylinders, one inside the other. The inner cylinder is negatively charged and the outer is positively charged; the magnitude of the charge on each is 10.0 pC. The inner cylinder has radius 0.50 mm, the outer one has radius 5.00 mm, and the length of each cylinder is 18.0 cm. (a) What is the capacitance? (b) What applied potential difference is necessary to produce these charges on the cylinders?
Problem 10
A cylindrical capacitor consists of a solid inner conducting core with radius 0.250 cm, surrounded by an outer hollow conducting tube. The two conductors are separated by air, and the length of the cylinder is 12.0 cm. The capacitance is 36.7 pF. (a) Calculate the inner radius of the hollow tube. (b) When the capacitor is charged to 125 V, \(\textbf{what is the charge per unit length}\) \(\lambda\) on the capacitor?
Problem 12
A cylindrical capacitor has an inner conductor of radius 2.2 mm and an outer conductor of radius 3.5 mm. The two conductors are separated by vacuum, and the entire capacitor is 2.8 m long. (a) What is the capacitance per unit length? (b) The potential of the inner conductor is 350 mV higher than that of the outer conductor. Find the charge (magnitude and sign) on both conductors.