Chapter 23: Problem 41
A metal sphere with radius \(r_a\) is supported on an insulating stand at the center of a hollow, metal, spherical shell with radius \(r_b\) . There is charge \(+\)q on the inner sphere and charge \(-\)q on the outer spherical shell. (a) Calculate the potential \(V(r)\) for (i) \(r < r_a ;\) (ii) \(r_a < r < r_b ;\) (iii) \(r > r_b .\) (\(Hint\): The net potential is the sum of the potentials due to the individual spheres.) Take \(V\) to be zero when \(r\) is infinite. (b) Show that the potential of the inner sphere with respect to the outer is $$V_{ab} = \frac{q} {4\pi\epsilon_0} ( \frac{1} {r_a} - \frac{1} {r_b} )$$ (c) Use Eq. (23.23) and the result from part (a) to show that the electric field at any point between the spheres has magnitude $$E(r) = \frac {V_{ab}} {(1/r_a - 1/r_b)}\frac {1} {r_2}$$ (d) Use Eq. (23.23) and the result from part (a) to find the electric field at a point outside the larger sphere at a distance \(r\) from the center, where \(r > r_b\) . (e) Suppose the charge on the outer sphere is not \(-q\) but a negative charge of different magnitude, say \(-Q\). Show that the answers for parts (b) and (c) are the same as before but the answer for part (d) is different.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.