Chapter 15: Problem 41
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation \(y(x, t) = (5.60 \, \mathrm{cm}) \mathrm{sin} [(0.0340 \mathrm{rad/cm})x] \mathrm{sin} [(150.0 \, \mathrm{rad/s})t]\), where the origin is at the left end of the string, the x-axis is along the string, and the \(y\)-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation \(y(x,t)\) for this string if it were vibrating in its eighth harmonic?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.