Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 1

A 0.120-kg, 50.0-cm-long uniform bar has a small 0.055-kg mass glued to its left end and a small 0.110-kg mass glued to the other end. The two small masses can each be treated as point masses. You want to balance this system horizontally on a fulcrum placed just under its center of gravity. How far from the left end should the fulcrum be placed?

Problem 3

A uniform rod is 2.00 m long and has mass 1.80 kg. A 2.40-kg clamp is attached to the rod. How far should the center of gravity of the clamp be from the left-hand end of the rod in order for the center of gravity of the composite object to be 1.20 m from the left-hand end of the rod?

Problem 6

Two people are carrying a uniform wooden board that is 3.00 m long and weighs 160 N. If one person applies an upward force equal to 60 N at one end, at what point does the other person lift? Begin with a free-body diagram of the board.

Problem 7

Two people carry a heavy electric motor by placing it on a light board 2.00 m long. One person lifts at one end with a force of 400 N, and the other lifts the opposite end with a force of 600 N. (a) What is the weight of the motor, and where along the board is its center of gravity located? (b) Suppose the board is not light but weighs 200 N, with its center of gravity at its center, and the two people each exert the same forces as before. What is the weight of the motor in this case, and where is its center of gravity located?

Problem 9

A 350-N, uniform, 1.50-m bar is suspended horizontally by two vertical cables at each end. Cable \(A\) can support a maximum tension of 500.0 N without breaking, and cable \(B\) can support up to 400.0 N. You want to place a small weight on this bar. (a) What is the heaviest weight you can put on without breaking either cable, and (b) where should you put this weight?

Problem 10

A uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end 3.0 m from the wall. The ladder weighs 160 N. The coefficient of static friction between the foot of the ladder and the ground is 0.40. A man weighing 740 N climbs slowly up the ladder. Start by drawing a free-body diagram of the ladder. (a) What is the maximum friction force that the ground can exert on the ladder at its lower end? (b) What is the actual friction force when the man has climbed 1.0 m along the ladder? (c) How far along the ladder can the man climb before the ladder starts to slip?

Problem 19

A 3.00-m-long, 190-N, uniform rod at the zoo is held in a horizontal position by two ropes at its ends (\(\textbf{Fig. E11.19}\)). The left rope makes an angle of 150\(^\circ\) with the rod, and the right rope makes an angle \(\theta\) with the horizontal. A 90-N howler monkey (\(Alouattase\) \(niculus\)) hangs motionless 0.50 m from the right end of the rod as he carefully studies you. Calculate the tensions in the two ropes and the angle \(\theta\). First make a free-body diagram of the rod.

Problem 20

A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0\(^\circ\) below the horizontal. It is held in position by a frictionless pivot at its upper right end and by a cable 3.00 m farther down the beam and perpendicular to it (\(\textbf{Fig. E11.20}\)). The center of gravity of the beam is 2.00 m down the beam from the pivot. Lighting equipment exerts a 5.00-kN downward force on the lower left end of the beam. Find the tension \(T\) in the cable and the horizontal and vertical components of the force exerted on the beam by the pivot. Start by sketching a free-body diagram of the beam.

Problem 24

A relaxed biceps muscle requires a force of 25.0 N for an elongation of 3.0 cm; the same muscle under maximum tension requires a force of 500 N for the same elongation. Find Young's modulus for the muscle tissue under each of these conditions if the muscle is assumed to be a uniform cylinder with length 0.200 m and cross-sectional area 50.0 cm\(^2\).

Problem 27

A metal rod that is 4.00 m long and 0.50 cm\(^2\) in crosssectional area is found to stretch 0.20 cm under a tension of 5000 N. What is Young's modulus for this metal?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Physics Textbooks