Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 15.0-kg bucket of water is suspended by a very light rope wrapped around a solid uniform cylinder 0.300 m in diameter with mass 12.0 kg. The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls 10.0 m to the water. (a) What is the tension in the rope while the bucket is falling? (b) With what speed does the bucket strike the water? (c) What is the time of fall? (d) While the bucket is falling, what is the force exerted on the cylinder by the axle?

Short Answer

Expert verified
Tension in rope: 48.7 N; Speed of bucket: 12.54 m/s; Time of fall: 1.26 s; Force on cylinder: 166.3 N.

Step by step solution

01

Understanding the System

We have a system with a bucket of water attached to a rope, which is wrapped around a solid cylinder that can rotate about a frictionless axis through its center. The bucket's fall causes the cylinder to rotate. The masses are given as 15.0 kg for the bucket and 12.0 kg for the cylinder, with the radius being half of the cylinder's diameter, 0.15 m.
02

Applying Newton's Laws

For the bucket's motion, apply Newton's second law, considering the forces acting on the bucket. The gravitational force is pulling it downwards and tension is acting upwards:\[ m_b g - T = m_b a \]where \(m_b = 15\ \text{kg}\), \(g = 9.81\ \text{m/s}^2\), and \(a\) is the linear acceleration of the bucket.
03

Relating Torque to Angular Motion

For the cylinder, use the relation between torque and angular acceleration. The torque caused by the tension is given by:\[ T imes R = I imes \alpha \]where \(R = 0.15\ \text{m}\), and \( \alpha = \frac{a}{R} \). The moment of inertia \(I\) for a cylinder is \( \frac{1}{2} m_c R^2 \), where \(m_c = 12\ \text{kg}\):\[ I = \frac{1}{2} \times 12 \times (0.15)^2 \]
04

Combining Equations

From the bucket's equation and torque equation, express \(a\) in terms of \(T\):From torque:\[ T \times 0.15 = \frac{1}{2} \times 12 \times (0.15)^2 \times \frac{a}{0.15} \]Simplify and solve:\[ T = 0.9a \]From bucket:\[ 147.15 - T = 15a \]Substitute for \(T\):\[ 147.15 - 0.9a = 15a \]Solve for \(a\).
05

Calculating the Tension

Now, let's solve for tension once we have \(a\): From substitution previously, \(a = 7.915 \ \text{m/s}^2\), substitute:\[ T = 0.9 \times 7.915 = 7.1235 \ \text{N} \]
06

Calculating the Speed on Impact

For the bucket, starting from rest, use the kinematic equation:\[ v^2 = u^2 + 2as \]Where \( u = 0 \), \( s = 10 \ \text{m} \), and \( a = 7.915 \ \text{m/s}^2 \), solve for \( v \).
07

Calculating Time of Fall

Use the kinematic equation to find the time \( t \):\[ s = ut + \frac{1}{2}at^2 \]Since \( u = 0 \):\[ 10 = \frac{1}{2}\times 7.915\times t^2 \]Solve for \( t \).
08

Force Exerted by the Axle

The vertical force on the cylinder from the axle includes the weight of the cylinder and the vertical force due to tension:\[ F_{axle} = m_c g + T \]Substitute the known values to find this force.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Newton's Laws
Newton's laws of motion are fundamental to understanding how objects behave when forces are applied to them. In this exercise, we mainly focus on the second law, which states: \( F = m imes a \). This means that the force acting on an object is the product of its mass and acceleration.
For the bucket in our exercise, the forces include gravity pulling it downward and the tension in the rope pulling it upwards. To find the bucket's acceleration, we apply Newton's second law:
  • Gravitational force: \( F_g = m_b imes g \)
  • Tension force: \( T \)
The net force equation becomes: \[ m_b imes g - T = m_b imes a \]This formula allows us to solve for the unknowns, like acceleration \(a\) and tension \(T\), using given values such as the mass of the bucket \(m_b\) and gravitational acceleration \(g\). This showcases how Newton's second law directly predicts the bucket's motion.
Moment of Inertia
Moment of inertia is like the rotational equivalent of mass in linear motion. It describes an object's resistance to change in its rotational state. The formula for the moment of inertia \(I\) for a cylinder rotating around its central axis is:\[ I = \frac{1}{2} m_c R^2 \]where \(m_c\) is the cylinder's mass, and \(R\) is its radius.
In our scenario, the cylinder's moment of inertia determines how the rotational motion responds to the torque applied by the tension in the rope. The cylinder's moment of inertia affects how quickly it can spin when the bucket pulls down on the rope. Since the torque \(T \times R\) relates to the cylinder's angular acceleration \(\alpha\), we use:\[ I \times \alpha = T \times R \]This allows us to connect the linear acceleration of the bucket to the angular motion of the cylinder. By calculating the moment of inertia, we know precisely how much rotational impact the falling bucket has on the cylinder.
Kinematics
Kinematics involves the equations that describe an object's motion without considering the causes of this motion. In our scenario, kinematics helps us find the speed of the bucket when it hits the water and the time it took to fall.
We use the equation of motion:\[ v^2 = u^2 + 2as \]Here, \(u\) is the initial velocity, \(v\) is the final velocity, \(a\) is the acceleration, and \(s\) is the distance fallen. Since the bucket starts from rest, \(u = 0\), simplifying it to:\[ v^2 = 2as \]Calculating \(v\) gives us the speed upon impact.
Another kinematic equation helps determine the fall time \(t\):\[ s = ut + \frac{1}{2}at^2 \]Since \(u = 0\), it simplifies to:\[ 10 = \frac{1}{2} \times 7.915 \times t^2 \]Solving for \(t\) gives the bucket's time to reach the water. Thus, kinematics bridges the acceleration found via physics with tangible, measurable motion results.
Torque
Torque is a measure of the rotational force that causes an object to turn. In this situation, torque results from the tension in the rope acting at a distance from the pivot point of the cylinder.
The torque \( \tau \) exerted on the cylinder due to the tension in the rope is calculated as:\[ \tau = T \times R \]where \(T\) is the tension and \(R\) is the radius of the cylinder.
Torque causes the cylinder to accelerate rotationally, which directly affects how quickly the bucket falls. This is expressed mathematically by:\[ \tau = I \times \alpha \]Linking these equations together helps us see that the tension in the rope not only keeps the cylinder turning but is also influenced by forces and the cylinder's moment of inertia. Understanding torque allows us to better visualize how the energy of the falling bucket transfers into the rotational motion of the cylinder.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A yo-yo is made from two uniform disks, each with mass \(m\) and radius \(R\), connected by a light axle of radius \(b\). A light, thin string is wound several times around the axle and then held stationary while the yo-yo is released from rest, dropping as the string unwinds. Find the linear acceleration and angular acceleration of the yo-yo and the tension in the string.

A machine part has the shape of a solid uniform sphere of mass 225 g and diameter 3.00 cm. It is spinning about a frictionless axle through its center, but at one point on its equator it is scraping against metal, resulting in a friction force of 0.0200 N at that point. (a) Find its angular acceleration. (b) How long will it take to decrease its rotational speed by 22.5 rad/s ?

The Hubble Space Telescope is stabilized to within an angle of about 2-millionths of a degree by means of a series of gyroscopes that spin at 19,200 rpm. Although the structure of these gyroscopes is actually quite complex, we can model each of the gyroscopes as a thin-walled cylinder of mass 2.0 kg and diameter 5.0 cm, spinning about its central axis. How large a torque would it take to cause these gyroscopes to precess through an angle of 1.0 \(\times 10^{-6}\) degree during a 5.0-hour exposure of a galaxy?

A uniform, 4.5-kg, square, solid wooden gate 1.5 m on each side hangs vertically from a frictionless pivot at the center of its upper edge. A 1.1-kg raven flying horizontally at 5.0 m/s flies into this door at its center and bounces back at 2.0 m/s in the opposite direction. (a) What is the angular speed of the gate just after it is struck by the unfortunate raven? (b) During the collision, why is the angular momentum conserved but not the linear momentum?

You complain about fire safety to the landlord of your high-rise apartment building. He is willing to install an evacuation device if it is cheap and reliable, and he asks you to design it. Your proposal is to mount a large wheel (radius 0.400 m) on an axle at its center and wrap a long, light rope around the wheel, with the free end of the rope hanging just past the edge of the roof. Residents would evacuate to the roof and, one at a time, grasp the free end of the rope, step off the roof, and be lowered to the ground below. (Ignore friction at the axle.) You want a 90.0-kg person to descend with an acceleration of g/4. (a) If the wheel can be treated as a uniform disk, what mass must it have? (b) As the person descends, what is the tension in the rope?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free