Chapter 9: Problem 65
What is the acceleration of the Earth in its orbit? (Assume the orbit is circular.)
Chapter 9: Problem 65
What is the acceleration of the Earth in its orbit? (Assume the orbit is circular.)
All the tools & learning materials you need for study success - in one app.
Get started for freeGear \(A\), with a mass of \(1.00 \mathrm{~kg}\) and a radius of \(55.0 \mathrm{~cm}\) is in contact with gear \(\mathrm{B}\), with a mass of \(0.500 \mathrm{~kg}\) and a radius of \(30.0 \mathrm{~cm} .\) The gears do not slip with respect to each other as they rotate. Gear A rotates at 120. rpm and slows to 60.0 rpm in \(3.00 \mathrm{~s}\). How many rotations does gear B undergo during this time interval?
A car accelerates uniformly from rest and reaches a speed of \(22.0 \mathrm{~m} / \mathrm{s}\) in \(9.00 \mathrm{~s}\). The diameter of a tire on this car is \(58.0 \mathrm{~cm}\). a) Find the number of revolutions the tire makes during the car's motion, assuming that no slipping occurs. b) What is the final angular speed of a tire in revolutions per second?
Two skaters, \(A\) and \(B,\) of equal mass are moving in clockwise uniform circular motion on the ice. Their motions have equal periods, but the radius of skater A's circle is half that of skater B's circle a) What is the ratio of the speeds of the skaters? b) What is the ratio of the magnitudes of the forces acting on each skater?
A ceiling fan is rotating in clockwise direction (as viewed from below) but it is slowing down. What are the directions of \(\omega\) and \(\alpha ?\)
Mars orbits the Sun at a mean distance of 228 million \(\mathrm{km},\) in a period of 687 days. The Earth orbits at a mean distance of 149.6 million \(\mathrm{km},\) in a period of 365.26 days. a) Suppose Earth and Mars are positioned such that Earth lies on a straight line between Mars and the Sun. Exactly 365.26 days later, when the Earth has completed one orbit, what is the angle between the Earth-Sun line and the Mars-Sun line? b) The initial situation in part (a) is a closest approach of Mars to Earth. What is the time, in days, between two closest approaches? Assume constant speed and circular orbits for both Mars and Earth. c) Another way of expressing the answer to part (b) is in terms of the angle between the lines drawn through the Sun, Earth, and Mars in the two closest approach situations. What is that angle?
What do you think about this solution?
We value your feedback to improve our textbook solutions.