Chapter 9: Problem 19
A car is traveling around an unbanked curve at a maximum speed. Which force(s) is(are) responsible for keeping it on the road?
Chapter 9: Problem 19
A car is traveling around an unbanked curve at a maximum speed. Which force(s) is(are) responsible for keeping it on the road?
All the tools & learning materials you need for study success - in one app.
Get started for freeA ball having a mass of \(1.00 \mathrm{~kg}\) is attached to a string \(1.00 \mathrm{~m}\) long and is whirled in a vertical circle at a constant speed of \(10.0 \mathrm{~m} / \mathrm{s}\) a) Determine the tension in the string when the ball is at the top of the circle. b) Determine the tension in the string when the ball is at the bottom of the circle. c) Consider the ball at some point other than the top or bottom. What can you say about the tension in the string at this point?
Unlike a ship, an airplane does not use its rudder to turn. It turns by banking its wings: The lift force, perpendicular to the wings, has a horizontal component, which provides the centripetal acceleration for the turn, and a vertical component, which supports the plane's weight. (The rudder counteracts yaw and thus it keeps the plane pointed in the direction it is moving.) The famous spy plane, the SR-71 Blackbird, flying at \(4800 \mathrm{~km} / \mathrm{h}\), has a turning radius of \(290 . \mathrm{km} .\) Find its banking angle.
The angular speed of the hour hand of a clock (in radians per second) is a) \(\frac{\pi}{7200}\) b) \(\frac{\pi}{3600}\) c) \(\frac{\pi}{1800}\) d) \(\frac{\pi}{60}\) e) \(\frac{\pi}{30}\) f) The correct value is not shown.
A car of weight \(W=\) \(10.0 \mathrm{kN}\) makes a turn on a track that is banked at an angle of \(\theta=20.0^{\circ} .\) Inside the car, hanging from a short string tied to the rear-view mirror, is an ornament. As the car turns, the ornament swings out at an angle of \(\varphi=30.0^{\circ}\) measured from the vertical inside the car. What is the force of static friction between the car and the road?
A girl on a merry-go-round platform holds a pendulum in her hand. The pendulum is \(6.0 \mathrm{~m}\) from the rotation axis of the platform. The rotational speed of the platform is 0.020 rev/s. It is found that the pendulum hangs at an angle \(\theta\) to the vertical. Find \(\theta\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.