Chapter 8: Problem 13
A projectile is launched into the air. Part way through its flight, it explodes. How does the explosion affect the motion of the center of mass of the projectile?
Chapter 8: Problem 13
A projectile is launched into the air. Part way through its flight, it explodes. How does the explosion affect the motion of the center of mass of the projectile?
All the tools & learning materials you need for study success - in one app.
Get started for freeA thin rectangular plate of uniform area density \(\sigma_{1}=1.05 \mathrm{~kg} / \mathrm{m}^{2}\) has a length \(a=0.600 \mathrm{~m}\) and a width \(b=0.250 \mathrm{~m} .\) The lower left corner is placed at the origin, \((x, y)=(0,0) .\) A circular hole of radius \(r=0.048 \mathrm{~m}\) with center at \((x, y)=(0.068 \mathrm{~m}, 0.068 \mathrm{~m})\) is cut in the plate. The hole is plugged with a disk of the same radius that is composed of another material of uniform area density \(\sigma_{2}=5.32 \mathrm{~kg} / \mathrm{m}^{2}\) What is the distance from the origin of the resulting plate's center of mass?
An astronaut is performing a space walk outside the International Space Station. The total mass of the astronaut with her space suit and all her gear is \(115 \mathrm{~kg} .\) A small leak develops in her propulsion system and \(7.00 \mathrm{~g}\) of gas are ejected each second into space with a speed of \(800 \mathrm{~m} / \mathrm{s}\). She notices the leak 6.00 s after it starts. How much will the gas leak have caused her to move from her original location in space by that time?
You are piloting a spacecraft whose total mass is \(1000 \mathrm{~kg}\) and attempting to dock with a space station in deep space. Assume for simplicity that the station is stationary, that your spacecraft is moving at \(1.0 \mathrm{~m} / \mathrm{s}\) toward the station, and that both are perfectly aligned for docking. Your spacecraft has a small retro-rocket at its front end to slow its approach, which can burn fuel at a rate of \(1.0 \mathrm{~kg} / \mathrm{s}\) and with an exhaust velocity of \(100 \mathrm{~m} / \mathrm{s}\) relative to the rocket. Assume that your spacecraft has only \(20 \mathrm{~kg}\) of fuel left and sufficient distance for docking. a) What is the initial thrust exerted on your spacecraft by the retro-rocket? What is the thrust's direction? b) For safety in docking, NASA allows a maximum docking speed of \(0.02 \mathrm{~m} / \mathrm{s}\). Assuming you fire the retro-rocket from time \(t=0\) in one sustained burst, how much fuel (in kilograms) has to be burned to slow your spacecraft to this speed relative to the space station? c) How long should you sustain the firing of the retrorocket? d) If the space station's mass is \(500,000 \mathrm{~kg}\) (close to the value for the ISS), what is the final velocity of the station after the docking of your spacecraft, which arrives with a speed of \(0.02 \mathrm{~m} / \mathrm{s}\) ?
Sam \((61 \mathrm{~kg})\) and Alice \((44 \mathrm{~kg})\) stand on an ice rink, providing them with a nearly frictionless surface to slide on. Sam gives Alice a push, causing her to slide away at a speed (with respect to the rink) of \(1.20 \mathrm{~m} / \mathrm{s}\). a) With what speed does Sam recoil? b) Calculate the change in the kinetic energy of the SamAlice system. c) Energy cannot be created or destroyed. What is the source of the final kinetic energy of this system?
The density of a \(1.00-\mathrm{m}\) long rod can be described by the linear density function \(\lambda(x)=\) \(100 \cdot \mathrm{g} / \mathrm{m}+10.0 x \mathrm{~g} / \mathrm{m}^{2}\) One end of the rod is positioned at \(x=0\) and the other at \(x=1.00 \mathrm{~m} .\) Determine (a) the total mass of the rod, and (b) the center-of-mass coordinate.
What do you think about this solution?
We value your feedback to improve our textbook solutions.