Chapter 7: Problem 22
The electron-volt, \(\mathrm{eV},\) is a unit of energy \((1 \mathrm{eV}=\) \(\left.1.602 \cdot 10^{-19} \mathrm{~J}, 1 \mathrm{MeV}=1.602 \cdot 10^{-13} \mathrm{~J}\right) .\) Since the unit of \(\mathrm{mo}\) mentum is an energy unit divided by a velocity unit, nuclear physicists usually specify momenta of nuclei in units of \(\mathrm{MeV} / c,\) where \(c\) is the speed of light \(\left(c=2.998 \cdot 10^{9} \mathrm{~m} / \mathrm{s}\right) .\) In the same units, the mass of a proton \(\left(1.673 \cdot 10^{-27} \mathrm{~kg}\right)\) is given as \(938.3 \mathrm{MeV} / \mathrm{c}^{2} .\) If a proton moves with a speed of \(17,400 \mathrm{~km} / \mathrm{s}\) what is its momentum in units of \(\mathrm{MeV} / \mathrm{c}\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.