Chapter 7: Problem 17
A rocket works by expelling gas (fuel) from its nozzles at a high velocity. However, if we take the system to be the rocket and fuel, explain qualitatively why a stationary rocket is able to move.
Chapter 7: Problem 17
A rocket works by expelling gas (fuel) from its nozzles at a high velocity. However, if we take the system to be the rocket and fuel, explain qualitatively why a stationary rocket is able to move.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn many old Western movies, a bandit is knocked back \(3 \mathrm{~m}\) after being shot by a sheriff. Which statement best describes what happened to the sheriff after he fired his gun? a) He remained in the same position. b) He was knocked back a step or two. c) He was knocked back approximately \(3 \mathrm{~m}\). d) He was knocked forward slightly. e) He was pushed upward.
Current measurements and cosmological theories suggest that only about \(4 \%\) of the total mass of the universe is composed of ordinary matter. About \(22 \%\) of the mass is composed of dark matter, which does not emit or reflect light and can only be observed through its gravitational interaction with its surroundings (see Chapter 12). Suppose a galaxy with mass \(M_{\mathrm{G}}\) is moving in a straight line in the \(x\) -direction. After it interacts with an invisible clump of dark matter with mass \(M_{\mathrm{DM}}\), the galaxy moves with \(50 \%\) of its initial speed in a straight line in a direction that is rotated by an angle \(\theta\) from its initial velocity. Assume that initial and final velocities are given for positions where the galaxy is very far from the clump of dark matter, that the gravitational attraction can be neglected at those positions, and that the dark matter is initially at rest. Determine \(M_{\mathrm{DM}}\) in terms of \(M_{\mathrm{G}}, v_{0},\) and \(\theta\).
Tennis champion Venus Williams is capable of serving a tennis ball at around 127 mph. a) Assuming that her racquet is in contact with the 57.0 -g ball for \(0.250 \mathrm{~s}\), what is the average force of the racquet on the ball? b) What average force would an opponent's racquet have to exert in order to return Williams's serve at a speed of \(50.0 \mathrm{mph}\), assuming that the opponent's racquet is also in contact with the ball for 0.250 s?
Bats are extremely adept at catching insects in midair. If a 50.0-g bat flying in one direction at \(8.00 \mathrm{~m} / \mathrm{s}\) catches a \(5.00-\mathrm{g}\) insect flying in the opposite direction at \(6.00 \mathrm{~m} / \mathrm{s}\), what is the speed of the bat immediately after catching the insect?
A 60.0 -kg astronaut inside a 7.00 -m-long space capsule of mass \(500 . \mathrm{kg}\) is floating weightlessly on one end of the capsule. He kicks off the wall at a velocity of \(3.50 \mathrm{~m} / \mathrm{s}\) toward the other end of the capsule. How long does it take the astronaut to reach the far wall?
What do you think about this solution?
We value your feedback to improve our textbook solutions.