Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To solve problems involving projectiles traveling through the air by applying the law of conservation of momentum requires evaluating the momentum of the system immediately before and immediately after the collision or explosion. Why?

Short Answer

Expert verified
Answer: Evaluating the momentum of a projectile system immediately before and immediately after a collision or explosion is important because it allows us to apply the law of conservation of momentum accurately. This law states that the total momentum of an isolated system remains constant if no external forces are acting upon it. By analyzing the momentum at these specific instances, we can ignore the effect of any external forces that may be acting during the collision or explosion and efficiently solve challenges involving projectiles, collisions, and explosions.

Step by step solution

01

Law of Conservation of Momentum

The law of conservation of momentum states that the total momentum of an isolated system remains constant if no external forces are acting upon it. This means that the momentum before a collision or an explosion is equal to the momentum after the event.
02

Momentum Before and After Collision or Explosion

To analyze problems involving projectiles and momentum conservation, we should evaluate the momentum of the system immediately before and immediately after the event. This is because momentum is conserved only at these specific instances when considering collisions or explosions. During the collision or explosion, external forces might be acting on the system, altering the momentum. By studying the momentum immediately before and after, we can ignore the effect of these forces and apply the law of conservation of momentum.
03

Applying Conservation of Momentum

Given the initial conditions (speed, mass and direction) of the objects involved in the collision or explosion, calculate the total momentum of the system immediately before the event. Then, using the conservation of momentum, determine the possible outcomes after the event, which should maintain the total momentum conserved. This is the most reliable and efficient way to solve challenges involving projectiles traveling through the air, colliding, or exploding. In summary, evaluating the momentum of a projectile system immediately before and immediately after a collision or explosion is necessary to accurately apply the law of conservation of momentum and effectively solve these types of problems.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assume the nucleus of a radon atom, \({ }^{222} \mathrm{Rn}\), has a mass of \(3.68 \cdot 10^{-25} \mathrm{~kg} .\) This radioactive nucleus decays by emitting an alpha particle with an energy of \(8.79 \cdot 10^{-13} \mathrm{~J}\). The mass of an alpha particle is \(6.65 \cdot 10^{-27} \mathrm{~kg}\). Assuming that the radon nucleus was initially at rest, what is the velocity of the nucleus that remains after the decay?

An uncovered hopper car from a freight train rolls without friction or air resistance along a level track at a constant speed of \(6.70 \mathrm{~m} / \mathrm{s}\) in the positive \(x\) -direction. The mass of the car is \(1.18 \cdot 10^{5} \mathrm{~kg}\). a) As the car rolls, a monsoon rainstorm begins, and the car begins to collect water in its hopper (see the figure). What is the speed of the car after \(1.62 \cdot 10^{4} \mathrm{~kg}\) of water collects in the car's hopper? Assume that the rain is falling vertically in the negative \(y\) -direction. b) The rain stops, and a valve at the bottom of the hopper is opened to release the water. The speed of the car when the valve is opened is again \(6.70 \mathrm{~m} / \mathrm{s}\) in the positive \(x\) -direction (see the figure). The water drains out vertically in the negative \(y\) -direction. What is the speed of the car after all the water has drained out?

Two Sumo wrestlers are involved in an inelastic collision. The first wrestler, Hakurazan, has a mass of \(135 \mathrm{~kg}\) and moves forward along the positive \(x\) -direction at a speed of \(3.5 \mathrm{~m} / \mathrm{s}\). The second wrestler, Toyohibiki, has a mass of \(173 \mathrm{~kg}\) and moves straight toward Hakurazan at a speed of \(3.0 \mathrm{~m} / \mathrm{s} .\) Immediately after the collision, Hakurazan is deflected to his right by \(35^{\circ}\) (see the figure). In the collision, \(10 \%\) of the wrestlers' initial total kinetic energy is lost. What is the angle at which Toyohibiki is moving immediately after the collision?

A bored boy shoots a soft pellet from an air gun at a piece of cheese with mass \(0.25 \mathrm{~kg}\) that sits, keeping cool for dinner guests, on a block of ice. On one particular shot, his 1.2-g pellet gets stuck in the cheese, causing it to slide \(25 \mathrm{~cm}\) before coming to a stop. According to the package the gun came in, the muzzle velocity is \(65 \mathrm{~m} / \mathrm{s}\). What is the coefficient of friction between the cheese and the ice?

A hockey puck \(\left(m=170 . \mathrm{g}\right.\) and \(v_{0}=2.00 \mathrm{~m} / \mathrm{s}\) ) slides without friction on the ice and hits the rink board at \(30.0^{\circ}\) with respect to the normal. The puck bounces off the board at a \(40.0^{\circ}\) angle with respect to the normal. What is the coefficient of restitution for the puck? What is the ratio of the puck's final kinetic energy to its initial kinetic energy?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free