Chapter 6: Problem 79
A 1.00 -kg block is resting against a light, compressed spring at the bottom of a rough plane inclined at an angle of \(30.0^{\circ}\); the coefficient of kinetic friction between block and plane is \(\mu_{\mathrm{k}}=0.100 .\) Suppose the spring is compressed \(10.0 \mathrm{~cm}\) from its equilibrium length. The spring is then released, and the block separates from the spring and slides up the incline a distance of only \(2.00 \mathrm{~cm}\) beyond the spring's normal length before it stops. Determine a) the change in total mechanical energy of the system and b) the spring constant \(k\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.