Chapter 6: Problem 16
Can a potential energy function be defined for the force of friction?
Chapter 6: Problem 16
Can a potential energy function be defined for the force of friction?
All the tools & learning materials you need for study success - in one app.
Get started for freea) If you are at the top of a toboggan run that is \(40.0 \mathrm{~m}\) high, how fast will you be going at the bottom, provided you can ignore friction between the sled and the track? b) Does the steepness of the run affect how fast you will be going at the bottom? c) If you do not ignore the small friction force, does the steepness of the track affect the value of the speed at the bottom?
A spring with a spring constant of \(500 . \mathrm{N} / \mathrm{m}\) is used to propel a 0.500 -kg mass up an inclined plane. The spring is compressed \(30.0 \mathrm{~cm}\) from its equilibrium position and launches the mass from rest across a horizontal surface and onto the plane. The plane has a length of \(4.00 \mathrm{~m}\) and is inclined at \(30.0^{\circ} .\) Both the plane and the horizontal surface have a coefficient of kinetic friction with the mass of \(0.350 .\) When the spring is compressed, the mass is \(1.50 \mathrm{~m}\) from the bottom of the plane. a) What is the speed of the mass as it reaches the bottom of the plane? b) What is the speed of the mass as it reaches the top of the plane? c) What is the total work done by friction from the beginning to the end of the mass's motion?
A pendulum swings in a vertical plane. At the bottom of the swing, the kinetic energy is \(8 \mathrm{~J}\) and the gravitational potential energy is 4 J. At the highest position of its swing, the kinetic and gravitational potential energies are a) kinetic energy \(=0 \mathrm{~J}\) and gravitational potential energy \(=4 \mathrm{~J}\) b) kinetic energy \(=12 \mathrm{~J}\) and gravitational potential energy \(=0 \mathrm{~J}\) c) kinetic energy \(=0 \mathrm{~J}\) and gravitational potential energy \(=12 \mathrm{~J}\) d) kinetic energy \(=4\) J and gravitational potential energy \(=8 \mathrm{~J}\) e) kinetic energy \(=8 \mathrm{~J}\) and gravitational potential energy \(=4\) J.
A 80.0 -kg fireman slides down a 3.00 -m pole by applying a frictional force of \(400 .\) N against the pole with his hands. If he slides from rest, how fast is he moving once he reaches the ground?
A basketball of mass \(0.624 \mathrm{~kg}\) is shot from a vertical height of \(1.2 \mathrm{~m}\) and at a speed of \(20.0 \mathrm{~m} / \mathrm{s}\). After reaching its maximum height, the ball moves into the hoop on its downward path, at \(3.05 \mathrm{~m}\) above the ground. Using the principle of energy conservation, determine how fast the ball is moving just before it enters the hoop.
What do you think about this solution?
We value your feedback to improve our textbook solutions.