Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Can the kinetic energy of an object be negative? Can the potential energy of an object be negative?

Short Answer

Expert verified
Answer: Kinetic energy of an object can never be negative as both mass and the square of velocity are always positive. However, potential energy can be negative depending on the chosen reference point for height. If the reference point is above an object's current position, the height will be negative, resulting in negative potential energy.

Step by step solution

01

Determine if kinetic energy can be negative

The formula for kinetic energy is K = (1/2)mv^2. Since the mass of an object (m) is always positive, and the square of the velocity (v^2) is also always positive, the product (1/2)mv^2 will always be positive or equal to zero. It cannot be negative, so we can conclude that the kinetic energy of an object cannot be negative.
02

Determine if potential energy can be negative

The formula for potential energy is U = mgh. The mass of an object (m) is always positive, and the acceleration due to gravity (g) is also always positive. However, the height (h) above the reference point can be either positive or negative depending on the chosen reference point. If we choose a reference point below the object's current position, the height (h) will be positive, and the potential energy (U) will be positive. However, if we choose a reference point above the object's current position, the height (h) will be negative, and the potential energy (U) will be negative. In conclusion, it's possible for the potential energy of an object to be negative depending on the chosen reference point.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A child throws three identical marbles from the same height above the ground so that they land on the flat roof of a building. The marbles are launched with the same initial speed. The first marble, marble \(\mathrm{A}\), is thrown at an angle of \(75^{\circ}\) above horizontal, while marbles \(\mathrm{B}\) and \(\mathrm{C}\) are thrown with launch angles of \(60^{\circ}\) and \(45^{\circ}\), respectively. Neglecting air resistance, rank the marbles according to the speeds with which they hit the roof. a) \(A

A package is dropped on a horizontal conveyor belt. The mass of the package is \(m,\) the speed of the conveyor belt is \(v\), and the coefficient of kinetic friction between the package and the belt is \(\mu_{\mathrm{k}}\) a) How long does it take for the package to stop sliding on the belt? b) What is the package's displacement during this time? c) What is the energy dissipated by friction? d) What is the total work supplied by the system?

A body of mass \(m\) moves in one dimension under the influence of a force, \(F(x)\), which depends only on the body's position. a) Prove that Newton's Second Law and the law of conservation of energy for this body are exactly equivalent. b) Explain, then, why the law of conservation of energy is considered to be of greater significance than Newton's Second Law.

The molecular bonding in a diatomic molecule such as the nitrogen \(\left(\mathrm{N}_{2}\right)\) molecule can be modeled by the Lennard Jones potential, which has the form $$ U(x)=4 U_{0}\left(\left(\frac{x_{0}}{x}\right)^{12}-\left(\frac{x_{0}}{x}\right)^{6}\right) $$ where \(x\) is the separation distance between the two nuclei and \(x_{0}\), and \(U_{0}\) are constants. Determine, in terms of these constants, the following: a) the corresponding force function; b) the equilibrium separation \(x_{0}\), which is the value of \(x\) for which the two atoms experience zero force from each other; and c) the nature of the interaction (repulsive or attractive) for separations larger and smaller than \(x_{0}\).

A block of mass \(5.0 \mathrm{~kg}\) slides without friction at a speed of \(8.0 \mathrm{~m} / \mathrm{s}\) on a horizontal table surface until it strikes and sticks to a mass of \(4.0 \mathrm{~kg}\) attached to a horizontal spring (with spring constant of \(k=2000.0 \mathrm{~N} / \mathrm{m}\) ), which in turn is attached to a wall. How far is the spring compressed before the masses come to rest? a) \(0.40 \mathrm{~m}\) b) \(0.54 \mathrm{~m}\) c) \(0.30 \mathrm{~m}\) d) \(0.020 \mathrm{~m}\) e) \(0.67 \mathrm{~m}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free