Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Which of the following is a composite particle? (select all that apply) a) electron b) neutrino c) proton d) muon

Short Answer

Expert verified
Answer: c) proton

Step by step solution

01

Review of terminology:

It is important to understand the terminology in order to solve this problem. Fundamental particles are the elementary building blocks of matter and cannot be broken down into smaller components, while composite particles are made up of two or more fundamental particles. In this exercise, we need to identify which of the given particles are composite particles.
02

Identify the fundamental particles:

From the list of particles provided, we can identify the following as fundamental particles (these are sometimes referred to as elementary particles): 1. electron 2. neutrino 3. muon These particles are considered fundamental because they are not made up of smaller particles.
03

Identify the composite particle(s):

Looking at the remaining particle in the list, the proton, we can see that it is composed of smaller particles called quarks. Specifically, a proton consists of two up quarks and one down quark, making it a composite particle.
04

Final answer:

Out of the given particle list, only the proton (c) is a composite particle, while the others (electron, neutrino, and muon) are fundamental particles.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The fundamental observation underlying the Big Bang theory of cosmology is Edwin Hubble's 1929 discovery that the arrangement of galaxies throughout space is expanding. Like the photons of the cosmic microwave background, the light from distant galaxies is stretched to longer wavelengths by the expansion of the universe. This is not a Doppler shift: Except for their local motions around each other, the galaxies are essentially at rest in space; it is the space itself that expands. The ratio of the wavelength of light \(\lambda_{\text {rec }}\) Earth receives from a galaxy to its wavelength \(\lambda_{\text {emit }}\) at emission is equal to the ratio of the scale factor (e.g., radius of curvature) \(a\) of the universe at reception to its value at emission. The redshift \(z\) of the light-which is what Hubble could measure - is defined by \(1+z=\lambda_{\text {rec }} / \lambda_{\text {emit }}=a_{\text {rec }} / a_{\text {emit }}\). a) Hubble's Law states that the redshift \(z\) of light from a galaxy is proportional to the galaxy's distance from us (for reasonably nearby galaxies): \(z \cong c^{-1} H \Delta s\), where \(c\) is the vacuum speed of light, \(H\) is the Hubble constant, and \(\Delta s\) is the distance of the galaxy. Derive this law from the first relationships stated in the problem, and determine the Hubble constant in terms of the scale-factor function \(a(t)\). b) If the present Hubble constant has the value \(H_{0}=72(\mathrm{~km} / \mathrm{s}) / \mathrm{Mpc},\) how far away is a galaxy, the light from which has redshift \(z=0.10\) ? (The megaparsec \((\mathrm{Mpc})\) is a unit of length equal to \(3.26 \cdot 10^{6}\) light-years. For comparison, the Great Nebula in Andromeda is approximately 0.60 Mpc from us.)

At about \(10^{-6}\) s after the Big Bang, the universe had cooled to a temperature of approximately \(10^{13} \mathrm{~K}\). a) Calculate the thermal energy. b) Explain what would happen to most of the hadronsprotons and neutrons. c) Explain also about the electrons and positrons in terms of temperature and time.

Draw possible Feynman diagrams for the following phenomena: a) protons scattering off each other b) neutron beta decays to a proton: \(n \rightarrow p+e^{-}+\bar{\nu}_{e}\).

Within three years after it begins operation, the proton beam at the Large Hadron Collider at CERN is expected to reach a luminosity of \(10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\) (this means that in a \(1-\mathrm{cm}^{2}\) area, \(10^{34}\) protons encounter each other every second). The cross section for collisions, which could lead to direct evidence of the Higgs boson, is approximately \(1 \mathrm{pb}\) (picobarn). [These numbers were obtained from "Introduction to LHC physics," by G. Polesello, Journal of Physics: Conference Series \(53(2006), 107-116 .]\) If the accelerator runs without interruption, approximately how many of these Higgs events can one expect in one year at the LHC?

a) Calculate the kinetic energy of a neutron that has a de Broglie's wavelength of \(0.15 \mathrm{nm}\). Compare this with the energy of an X-ray photon that has the same wavelength. b) Comment on how this would be relevant for investigating biological samples with neutrons vs. X-rays.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free