Chapter 38: Problem 3
The muon has the same charge as an electron but a mass that is 207 times greater. The negatively charged muon can bind to a proton to form a new type of hydrogen atom. How does the binding energy \(E_{\mathrm{B} \mu}\) of the muon in the ground state of a muonic hydrogen atom compare with the binding energy \(E_{\mathrm{Be}}\) of an electron in the ground state of a conventional hydrogen atom? a) \(\left|E_{\mathrm{B} \mu}\right| \approx\left|E_{\mathrm{Be}}\right|\) d) \(\left|E_{\mathrm{B} \mu}\right| \approx 200 \mid E_{\mathrm{Be}}\) b) \(\left|E_{\mathrm{B} \mu}\right| \approx 100\left|E_{\mathrm{Be}}\right|\) e) \(\left|E_{\mathrm{B} \mu}\right| \approx\left|E_{\mathrm{Be}}\right| / 200\) c) \(\left|E_{\mathrm{B} \mu}\right| \approx\left|E_{\mathrm{Be}}\right| / 100\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.