Chapter 38: Problem 27
An excited hydrogen atom emits a photon with an energy of \(1.133 \mathrm{eV}\). What were the initial and final states of the hydrogen atom before and after emitting the photon?
Chapter 38: Problem 27
An excited hydrogen atom emits a photon with an energy of \(1.133 \mathrm{eV}\). What were the initial and final states of the hydrogen atom before and after emitting the photon?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn electron in a hydrogen atom is in the ground state (1s). Calculate the probability of finding the electron within a Bohr radius \(\left(a_{0}=0.05295 \mathrm{nm}\right)\) of the proton. The ground state wave function for hydrogen is: \(\psi_{1 s}(r)=A_{1 s} e^{-r / a_{0}}=e^{-r / a_{0}} / \sqrt{\pi a_{0}^{3}}\).
Find the energy difference between the ground state of hydrogen and deuterium (hydrogen with an extra neutron in the nucleus)
The radius of the \(n=1\) orbit in the hydrogen atom is $$ a_{0}=0.053 \mathrm{nm} $$ a) Compute the radius of the \(n=6\) orbit. How many times larger is this compared to the \(n=1\) radius? b) If an \(n=6\) electron relaxes to an \(n=1\) orbit (ground state), what is the frequency and wavelength of the emitted radiation? What kind of radiation was emitted (visible, infrared, etc.)? c) How would your answer in (a) change if the atom was a singly ionized helium atom \(\left(\mathrm{He}^{+}\right),\) instead?
What is the shortest possible wavelength of the Lyman series in hydrogen?
The binding energy of an extra electron when As atoms are doped in a Si crystal may be approximately calculated by considering the Bohr model of a hydrogen atom. a) Show the ground energy of hydrogen-like atoms in terms of the dielectric constant and the ground state energy of a hydrogen atom. b) Calculate the binding energy of the extra electron in a Si crystal. (The dielectric constant of Si is about 10.0 , and the effective mass of extra electrons in a Si crystal is about \(20.0 \%\) of that of free electrons.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.