Chapter 37: Problem 30
Example 37.1 calculates the energy of the wave function with the lowest quantum number for an electron confined to a box of width \(2.00 \AA\) in the one-dimensional case. However, atoms are three-dimensional entities with a typical diameter of \(1.00 \AA=10^{-10} \mathrm{~m} .\) It would seem then that the next, better approximation would be that of an electron trapped in a three-dimensional infinite potential well (a potential cube with sides of \(1.00 \mathrm{~A}\) ). a) Derive an expression for the electron wave function and the corresponding energies for a particle in a three dimensional rectangular infinite potential well. b) Calculate the lowest energy allowed for the electron in this case.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.