Chapter 35: Problem 21
Find the speed of light in feet per nanosecond, to three significant figures.
Chapter 35: Problem 21
Find the speed of light in feet per nanosecond, to three significant figures.
All the tools & learning materials you need for study success - in one app.
Get started for freeTwo stationary space stations are separated by a distance of \(100 .\) light- years, as measured by someone on one of the space stations. A spaceship traveling at \(0.950 c\) relative to the space stations passes by one of the space stations heading directly toward the other one. How long will it take to reach the other space station, as measured by someone on the spaceship? How much time will have passed for a traveler on the spaceship as it travels from one space station to the other, as measured by someone on one of the space stations? Round the answers to the nearest year.
A particle of rest mass \(m_{0}\) travels at a speed \(v=0.20 c\) How fast must the particle travel in order for its momentum to increase to twice its original momentum? a) \(0.40 c\) c) \(0.38 c\) e) \(0.99 c\) b) \(0.10 c\) d) \(0.42 c\)
Suppose NASA discovers a planet just like Earth orbiting a star just like the Sun. This planet is 35 light-years away from our Solar System. NASA quickly plans to send astronauts to this planet, but with the condition that the astronauts would not age more than 25 years during this journey. a) At what speed must the spaceship travel, in Earth's reference frame, so that the astronauts age 25 years during this journey? b) According to the astronauts, what will be the distance of their trip?
In some proton accelerators, proton beams are directed toward each other for head-on collisions. Suppose that in such an accelerator, protons move with a speed relative to the lab of \(0.9972 c\). a) Calculate the speed of approach of one proton with respect to another one with which it is about to collide head on. Express your answer as a multiple of \(c\), using six significant digits. b) What is the kinetic energy of each proton beam (in units of \(\mathrm{MeV}\) ) in the laboratory reference frame? c) What is the kinetic energy of one of the colliding protons (in units of \(\mathrm{MeV}\) ) in the rest frame of the other proton?
Consider a particle moving with a speed less than \(0.5 c\). If the speed of the particle is doubled, by what factor will the momentum increase? a) less than 2 b) equal to 2 c) greater than 2
What do you think about this solution?
We value your feedback to improve our textbook solutions.