Chapter 33: Problem 91
An instructor wants to use a lens to project a real image of a light bulb onto a screen \(1.71 \mathrm{~m}\) from the bulb. In order to get the image to be twice as large as the bulb, what focal length lens will be needed?
Chapter 33: Problem 91
An instructor wants to use a lens to project a real image of a light bulb onto a screen \(1.71 \mathrm{~m}\) from the bulb. In order to get the image to be twice as large as the bulb, what focal length lens will be needed?
All the tools & learning materials you need for study success - in one app.
Get started for freeYou are experimenting with a magnifying glass (consisting of a single converging lens) at a table. You discover that by holding the magnifying glass \(92.0 \mathrm{~mm}\) above your desk, you can form a real image of a light that is directly overhead. If the distance between the light and the table is \(2.35 \mathrm{~m},\) what is the focal length of the lens?
Some reflecting telescope mirrors utilize a rotating tub of mercury to produce a large parabolic surface. If the tub is rotating on its axis with an angular frequency \(\omega,\) show that the focal length of the resulting mirror is: \(f=g / 2 \omega^{2}\).
The radius of curvature for the outer part of the cornea is \(8.0 \mathrm{~mm}\), the inner portion is relatively flat. If the index of refraction of the cornea and the aqueous humor is 1.34: a) Find the power of the cornea. b) If the combination of the lens and the cornea has a power of \(50 .\) diopter, find the power of the lens (assume the two are touching).
What kind of lens is used in eyeglasses to correct the vision of someone who is a) nearsighted? b) farsighted?
For a microscope to work as intended, the separation between the objective lens and the eyepiece must be such that the intermediate image produced by the objective lens will occur at a distance (as measured from the optical center of the eyepiece) a) slightly larger than the focal length. b) slightly smaller than the focal length. c) equal to the focal length. d) The position of the intermediate image is irrelevant.
What do you think about this solution?
We value your feedback to improve our textbook solutions.