Chapter 33: Problem 88
Jack has a near point of \(32 \mathrm{~cm}\) and uses a magnifier of 25 diopter. a) What is the magnification if the final image is at infinity? b) What is the magnification if the final image is at the near point?
Chapter 33: Problem 88
Jack has a near point of \(32 \mathrm{~cm}\) and uses a magnifier of 25 diopter. a) What is the magnification if the final image is at infinity? b) What is the magnification if the final image is at the near point?
All the tools & learning materials you need for study success - in one app.
Get started for freeAs a high-power laser engineer you need to focus a 1.06-mm diameter laser beam to a 10.0 - \(\mu\) m diameter spot \(20.0 \mathrm{~cm}\) behind the lens. What focal length lens would you use?
A beam of parallel light, \(1.00 \mathrm{~mm}\) in diameter passes through a lens with a focal length of \(10.0 \mathrm{~cm}\). Another lens, this one of focal length \(20.0 \mathrm{~cm},\) is located behind the first lens so that the light traveling out from it is again parallel. a) What is the distance between the two lenses? b) How wide is the outgoing beam? 33.41 How large does a \(5.0-\mathrm{mm}\) insect appear when viewed with a system of two identical lenses of focal length \(5.0 \mathrm{~cm}\) separated by a distance \(12 \mathrm{~cm}\) if the insect is \(10.0 \mathrm{~cm}\) from the first lens? Is the image real or virtual? Inverted or upright?
A converging lens of focal length \(f=50.0 \mathrm{~cm}\) is placed \(175 \mathrm{~cm}\) to the left of a metallic sphere of radius \(R=100 . \mathrm{cm} .\) An object of height \(h=20.0 \mathrm{~cm}\) is placed \(30.0 \mathrm{~cm}\) to the left of the lens. What is the height of the image formed by the metallic sphere?
To study a tissue sample better, a pathologist holds a \(5.00-\mathrm{cm}\) focal length magnifying glass \(3.00 \mathrm{~cm}\) from the sample. How much magnification can he get from the lens?
The object (upright arrow) in the following system has a height of \(2.5 \mathrm{~cm}\) and is placed \(5.0 \mathrm{~cm}\) away from a converging (convex) lens with a focal length of \(3.0 \mathrm{~cm}\). What is the magnification of the image? Is the image upright or inverted? Confirm your answers by ray tracing.
What do you think about this solution?
We value your feedback to improve our textbook solutions.