Chapter 33: Problem 84
A telescope is advertised as providing a magnification of magnitude 41 using an eyepiece of focal length \(4.0 \cdot 10^{1} \mathrm{~mm}\). What is the focal length of the objective?
Chapter 33: Problem 84
A telescope is advertised as providing a magnification of magnitude 41 using an eyepiece of focal length \(4.0 \cdot 10^{1} \mathrm{~mm}\). What is the focal length of the objective?
All the tools & learning materials you need for study success - in one app.
Get started for freeTo study a tissue sample better, a pathologist holds a \(5.00-\mathrm{cm}\) focal length magnifying glass \(3.00 \mathrm{~cm}\) from the sample. How much magnification can he get from the lens?
A converging lens will be used as a magnifying glass. In order for this to
work, the object must be placed at a distance
a) \(d_{\mathrm{o}}>f\).
c) \(d_{\mathrm{o}}
A plastic cylinder of length \(3.0 \cdot 10^{1} \mathrm{~cm}\) has its ends ground to convex (from the rod outward) spherical surfaces, each having radius of curvature \(1.0 \cdot 10^{1} \mathrm{~cm}\). A small object is placed \(1.0 \cdot 10^{1} \mathrm{~cm}\) from the left end. How far will the image of the object lie from the right end, if the index of refraction of the plastic is \(1.5 ?\)
A converging lens of focal length \(f=50.0 \mathrm{~cm}\) is placed \(175 \mathrm{~cm}\) to the left of a metallic sphere of radius \(R=100 . \mathrm{cm} .\) An object of height \(h=20.0 \mathrm{~cm}\) is placed \(30.0 \mathrm{~cm}\) to the left of the lens. What is the height of the image formed by the metallic sphere?
Two converging lenses with focal lengths \(5.00 \mathrm{~cm}\) and \(10.0 \mathrm{~cm}\), respectively, are placed \(30.0 \mathrm{~cm}\) apart. An object of height \(h=5.00 \mathrm{~cm}\) is placed \(10.0 \mathrm{~cm}\) to the left of the \(5.00-\mathrm{cm}\) lens. What will be the position and height of the final image produced by this lens system?
What do you think about this solution?
We value your feedback to improve our textbook solutions.