Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the magnification of a telescope with \(f_{0}=1.00 \cdot 10^{2} \mathrm{~cm}\) and \(f_{e}=5.00 \mathrm{~cm} ?\)

Short Answer

Expert verified
Answer: The magnification of the telescope is 20.

Step by step solution

01

Identify the Formula

To find the magnification of the telescope, we have to use the magnification formula: magnification = f0 / fe
02

Plug in Given Values

We're given f0 = 1.00 * 10^2 cm and fe = 5.00 cm. So, we can plug these values into the formula: magnification = (1.00 * 10^2 cm) / (5.00 cm)
03

Calculate the Magnification

Now, we just have to perform the division operation: magnification = (1.00 * 10^2 cm) / (5.00 cm) = 20 So, the magnification of the telescope is 20.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The object (upright arrow) in the following system has a height of \(2.5 \mathrm{~cm}\) and is placed \(5.0 \mathrm{~cm}\) away from a converging (convex) lens with a focal length of \(3.0 \mathrm{~cm}\). What is the magnification of the image? Is the image upright or inverted? Confirm your answers by ray tracing.

How large does a \(5.0-\mathrm{mm}\) insect appear when viewed with a system of two identical lenses of focal length \(5.0 \mathrm{~cm}\) separated by a distance \(12 \mathrm{~cm}\) if the insect is \(10.0 \mathrm{~cm}\) from the first lens? Is the image real or virtual? Inverted or upright?

Which one of the following is not a characteristic of a simple two-lens astronomical refracting telescope? a) The final image is virtual. b) The objective forms a virtual image. c) The final image is inverted.

A beam of parallel light, \(1.00 \mathrm{~mm}\) in diameter passes through a lens with a focal length of \(10.0 \mathrm{~cm}\). Another lens, this one of focal length \(20.0 \mathrm{~cm},\) is located behind the first lens so that the light traveling out from it is again parallel. a) What is the distance between the two lenses? b) How wide is the outgoing beam? 33.41 How large does a \(5.0-\mathrm{mm}\) insect appear when viewed with a system of two identical lenses of focal length \(5.0 \mathrm{~cm}\) separated by a distance \(12 \mathrm{~cm}\) if the insect is \(10.0 \mathrm{~cm}\) from the first lens? Is the image real or virtual? Inverted or upright?

A converging lens of focal length \(f=50.0 \mathrm{~cm}\) is placed \(175 \mathrm{~cm}\) to the left of a metallic sphere of radius \(R=100 . \mathrm{cm} .\) An object of height \(h=20.0 \mathrm{~cm}\) is placed \(30.0 \mathrm{~cm}\) to the left of the lens. What is the height of the image formed by the metallic sphere?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free