Chapter 33: Problem 6
LASIK surgery uses a laser to modify the a) curvature of the retina. b) index of refraction of the aqueous humor. c) curvature of the lens. d) curvature of the cornea.
Chapter 33: Problem 6
LASIK surgery uses a laser to modify the a) curvature of the retina. b) index of refraction of the aqueous humor. c) curvature of the lens. d) curvature of the cornea.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe focal length of the lens of a camera is \(38.0 \mathrm{~mm}\). How far must the lens be moved to change focus from a person \(30.0 \mathrm{~m}\) away to one that is \(5.00 \mathrm{~m}\) away?
Is it possible to start a fire by focusing the light of the Sun with ordinary eyeglasses? How, or why not?
Two identical thin convex lenses, each of focal length \(f\), are separated by a distance \(d=2.5 f\). An object is placed in front of the first lens at a distance \(d_{\mathrm{a}, 1}=2 f .\) a) Calculate the position of the final image of an object through the system of lenses. b) Calculate the total transverse magnification of the system. c) Draw the ray diagram for this system and show the final image. d) Describe the final image (real or virtual, erect or inverted, larger or smaller) in relation to the initial object.
Mirrors for astronomical instruments are invariably first-surface mirrors: The reflective coating is applied on the surface exposed to the incoming light. Household mirrors, on the other hand, are second-surface mirrors: The coating is applied to the back of the glass or plastic material of the mirror. (You can tell the difference by bringing the tip of an object close to the surface of the mirror. Object and image will nearly touch with a first-surface mirror; a gap will remain between them with a second-surface mirror.) Explain the reasons for these design differences.
Where is the image formed if an object is placed \(25 \mathrm{~cm}\) from the eye of a nearsighted person. What kind of a corrective lens should the person wear? a) Behind the retina. Converging lenses. b) Behind the retina. Diverging lenses. c) In front of the retina. Converging lenses. d) In front of the retina. Diverging lenses.
What do you think about this solution?
We value your feedback to improve our textbook solutions.