Chapter 32: Problem 42
Fermat's Principle, from which geometric optics can be derived, states that light travels by a path that minimizes the time of travel between the points. Consider a light beam that travels a horizontal distance \(D\) and a vertical distance \(h\), through two large flat slabs of material, with a vertical interface between the materials. One material has a thickness \(D / 2\) and index of refraction \(n_{1},\) and the second material has a thickness \(D / 2\) and index of refraction \(n_{2} .\) Determine the equation involving the indices of refraction and angles from horizontal that the light makes at the interface \(\left(\theta_{1}\right.\) and \(\theta_{2}\) ) which minimize the time for this travel.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.