Chapter 31: Problem 72
Quantum theory says that electromagnetic waves actually consist of discrete packets-photons-each with energy \(E=\hbar \omega,\) where \(\hbar=1.054573 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}\) is Planck's reduced constant and \(\omega\) is the angular frequency of the wave. a) Find the momentum of a photon. b) Find the angular momentum of a photon. Photons are circularly polarized; that is, they are described by a superposition of two plane-polarized waves with equal field amplitudes, equal frequencies, and perpendicular polarizations, one-quarter of a cycle \(\left(90^{\circ}\right.\) or \(\pi / 2\) rad \()\) out of phase, so the electric and magnetic field vectors at any fixed point rotate in a circle with the angular frequency of the waves. It can be shown that a circularly polarized wave of energy \(U\) and angular frequency \(\omega\) has an angular momentum of magnitude \(L=U / \omega .\) (The direction of the angular momentum is given by the thumb of the right hand, when the fingers are curled in the direction in which the field vectors circulate. c) The ratio of the angular momentum of a particle to \(\hbar\) is its spin quantum number. Determine the spin quantum number of the photon.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.