Chapter 31: Problem 33
Suppose an RLC circuit in resonance is used to produce a radio wave of wavelength \(150 \mathrm{~m}\). If the circuit has a 2.0 -pF capacitor, what size inductor is used?
Chapter 31: Problem 33
Suppose an RLC circuit in resonance is used to produce a radio wave of wavelength \(150 \mathrm{~m}\). If the circuit has a 2.0 -pF capacitor, what size inductor is used?
All the tools & learning materials you need for study success - in one app.
Get started for freeElectromagnetic waves from a small, isotropic source are not plane waves, which have constant maximum amplitudes. a) How does the maximum amplitude of the electric field of radiation from a small, isotropic source vary with distance from the source? b) Compare this with the electrostatic field of a point charge.
31.8 According to Gauss's Law for Magnetic Fields, all magnetic field lines form a complete loop. Therefore, the direction of the magnetic field \(\vec{B}\) points from _________ pole to ________ pole outside of an ordinary bar magnet and from ____ pole to pole _______ inside the magnet. a) north, south, north, south b) north, south, south, north c) south, north, south, north d) south, north, north, south
.An industrial carbon dioxide laser produces a beam of radiation with average power of \(6.00 \mathrm{~kW}\) at a wavelength of \(10.6 \mu \mathrm{m}\). Such a laser can be used to cut steel up to \(25 \mathrm{~mm}\) thick. The laser light is polarized in the \(x\) -direction, travels in the positive \(z\) -direction, and is collimated (neither diverging or converging) at a constant diameter of \(100.0 \mu \mathrm{m} .\) Write the equations for the laser light's electric and magnetic fields as a function of time and of position \(z\) along the beam. Recall that \(\vec{E}\) and \(\vec{B}\) are vectors. Leave the overall phase unspecified, but be sure to check the relative phase between \(\vec{E}\) and \(\vec{B}\) .
A monochromatic point source of light emits \(1.5 \mathrm{~W}\) of electromagnetic power uniformly in all directions. Find the Poynting vector at a point situated at each of the following locations: a) \(0.30 \mathrm{~m}\) from the source b) \(0.32 \mathrm{~m}\) from the source c) \(1.00 \mathrm{~m}\) from the source
What is the wavelength of the electromagnetic waves used for cell phone communications in the 850 -MHz band?
What do you think about this solution?
We value your feedback to improve our textbook solutions.