Chapter 30: Problem 22
Why can't a transformer be used to step up or step down the voltage in a DC circuit?
Chapter 30: Problem 22
Why can't a transformer be used to step up or step down the voltage in a DC circuit?
All the tools & learning materials you need for study success - in one app.
Get started for freea) A loop of wire \(5.00 \mathrm{~cm}\) in diameter is carrying a current of \(2.00 \mathrm{~A}\). What is the energy density of the magnetic field at its center? b) What current has to flow in a straight wire to produce the same energy density at a point \(4.00 \mathrm{~cm}\) from the wire?
The time-varying current in an LC circuit where \(C=10.0 \mu \mathrm{F}\) is given by \(i(t)=(1.00 \mathrm{~A}) \sin (1200 . t),\) where \(t\) is in seconds. a) At what time after \(t=0\) does the current reach its maximum value? b) What is the total energy of the circuit? c) What is the inductance, \(L\) ?
What are the maximum values of (a) current and (b) voltage when an incandescent 60 -W light bulb (at \(110 \mathrm{~V})\) is connected to a wall plug labeled \(110 \mathrm{~V} ?\)
In Solved Problem 30.1 , the voltage supplied by the source of time-varying emf is \(33.0 \mathrm{~V}\), the voltage across the resistor is \(V_{R}=I R=13.1 \mathrm{~V}\), and the voltage across the inductor is \(V_{L}=I X_{L}=30.3 \mathrm{~V}\). Does this circuit obey Kirchhoff's rules?
An inductor with inductance \(L=47.0 \mathrm{mH}\) is connected to an AC power source having a peak value of \(12.0 \mathrm{~V}\) and \(f=1000 . \mathrm{Hz} .\) Find the reactance of the inductor and the maximum current in the circuit.
What do you think about this solution?
We value your feedback to improve our textbook solutions.