Chapter 3: Problem 16
A rock is thrown at an angle \(45^{\circ}\) below the horizontal from the top of a building. Immediately after release will its acceleration be greater than, equal to, or less than the acceleration due to gravity?
Chapter 3: Problem 16
A rock is thrown at an angle \(45^{\circ}\) below the horizontal from the top of a building. Immediately after release will its acceleration be greater than, equal to, or less than the acceleration due to gravity?
All the tools & learning materials you need for study success - in one app.
Get started for freeFor a science fair competition, a group of high school students build a kicker-machine that can launch a golf ball from the origin with a velocity of \(11.2 \mathrm{~m} / \mathrm{s}\) and initial angle of \(31.5^{\circ}\) with respect to the horizontal. a) Where will the golf ball fall back to the ground? b) How high will it be at the highest point of its trajectory? c) What is the ball's velocity vector (in Cartesian components) at the highest point of its trajectory? d) What is the ball's acceleration vector (in Cartesian components) at the highest point of its trajectory?
Two cannonballs are shot in sequence from a cannon, into the air, with the same muzzle velocity, at the same launch angle. Based on their trajectory and range, how can you tell which one is made of lead and which one is made of wood. If the same cannonballs where launched in vacuum, what would the answer be?
A blimp is ascending at the rate of \(7.50 \mathrm{~m} / \mathrm{s}\) at a height of \(80.0 \mathrm{~m}\) above the ground when a package is thrown from its cockpit horizontally with a speed of \(4.70 \mathrm{~m} / \mathrm{s}\). a) How long does it take for the package to reach the ground? b) With what velocity (magnitude and direction) does it hit the ground?
On a battlefield, a cannon fires a cannonball up a slope, from ground level, with an initial velocity \(v_{0}\) at an angle \(\theta_{0}\) above the horizontal. The ground itself makes an angle \(\alpha\) above the horizontal \(\left(\alpha<\theta_{0}\right) .\) What is the range \(R\) of the cannonball, measured along the inclined ground? Compare your result with the equation for the range on horizontal ground (equation 3.25 ).
A football is punted with an initial velocity of \(27.5 \mathrm{~m} / \mathrm{s}\) and an initial angle of \(56.7^{\circ} .\) What is its hang time (the time until it hits the ground again)?
What do you think about this solution?
We value your feedback to improve our textbook solutions.