Chapter 29: Problem 55
An electromagnetic wave propagating in vacuum has electric and magnetic fields given by \(\vec{E}(\vec{x}, t)=\vec{E}_{0} \cos (\vec{k} \cdot \vec{x}-\omega t)\) and \(\vec{B}(\vec{x}, t)=\vec{B}_{0} \cos (\vec{k} \cdot \vec{x}-\omega t)\) where \(\vec{B}_{0}\) is given by \(\vec{B}_{0}=\vec{k} \times \vec{E}_{0} / \omega\) and the wave vector \(\vec{k}\) is perpendicular to both \(\vec{E}_{0}\) and \(\vec{B}_{0} .\) The magnitude of \(\vec{k}\) and the angular frequency \(\omega\) satisfy the dispersion relation, \(\omega /|\vec{k}|=\left(\mu_{0} \epsilon_{0}\right)^{-1 / 2},\) where \(\mu_{0}\) and \(\epsilon_{0}\) are the permeability and permittivity of free space, respectively. Such a wave transports energy in both its electric and magnetic fields. Calculate the ratio of the energy densities of the magnetic and electric fields, \(u_{B} / u_{E}\), in this wave. Simplify your final answer as much as possible.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.