Chapter 28: Problem 77
A horizontally oriented coil of wire of radius \(5.00 \mathrm{~cm}\) and carrying a current, \(i\), is being levitated by the south pole of a vertically oriented bar magnet suspended above the center of the coil. If the magnetic field on all parts of the coil makes an angle \(\theta\) of \(45.0^{\circ}\) with the vertical, determine the magnitude and the direction of the current needed to keep the coil floating in midair. The magnitude of the magnetic field is \(B=0.0100 \mathrm{~T}\), the number of turns in the coil is \(N=10.0\), and the total coil mass is \(10.0 \mathrm{~g}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.