Chapter 27: Problem 43
A square loop of wire of side length \(\ell\) lies in the \(x y\) -plane, with its center at the origin and its sides parallel to the \(x\) - and \(y\) -axes. It carries a current, \(i\), in the counterclockwise direction, as viewed looking down the \(z\) -axis from the positive direction. The loop is in a magnetic field given by \(\vec{B}=\left(B_{0} / a\right)(z \hat{x}+x \hat{z}),\) where \(B_{0}\) is a constant field strength, \(a\) is a constant with the dimension of length, and \(\hat{x}\) and \(\hat{z}\) are unit vectors in the positive \(x\) -direction and positive \(z\) -direction. Calculate the net force on the loop.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.