Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A straight wire of length \(2.00 \mathrm{~m}\) carries a current of \(24.0 \mathrm{~A} .\) It is placed on a horizontal tabletop in a uniform horizontal magnetic field. The wire makes an angle of \(30.0^{\circ}\) with the magnetic field lines. If the magnitude of the force on the wire is \(0.500 \mathrm{~N}\), what is the magnitude of the magnetic field?

Short Answer

Expert verified
Answer: The magnitude of the magnetic field is approximately 0.0208 T (tesla).

Step by step solution

01

Write down the known values

We are given the following values: - Length of the wire (\(L\)) = 2.00 m - Current in the wire (\(I\)) = 24.0 A - Angle between the wire and magnetic field lines (\(\theta\)) = 30.0° - Force on the wire (\(F\)) = 0.500 N
02

Convert the angle to radians

In order to use the formula, we need to convert the angle from degrees to radians. We can do this using the following conversion: 1 radian = 180°/π. So, we have: $$ \theta_{rad} = 30.0° \cdot \frac{\pi}{180°} = \frac{\pi}{6} \, \text{radians} $$
03

Use the formula

Now that we have all the necessary values, we can use the formula for the force on a wire in a magnetic field, \(F = BIL\sin{\theta}\), to find the magnitude of the magnetic field, \(B\): $$ B = \frac{F}{IL\sin{\theta}} $$
04

Substitute the known values

Now, substitute the known values into the formula: $$ B = \frac{0.500 N}{(24.0 A)(2.00 m) \sin(\frac{\pi}{6})} $$
05

Calculate the magnetic field magnitude

Finally, calculate the magnetic field magnitude: $$ B = \frac{0.500 N}{(24.0 A)(2.00 m) \, (0.5)} = \frac{0.500 N}{24.0 A} $$ The magnitude of the magnetic field is approximately: $$ B \approx 0.0208 \, \text{T} $$ So the magnitude of the magnetic field is approximately 0.0208 T (tesla).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An electron is moving at \(v=6.00 \cdot 10^{7} \mathrm{~m} / \mathrm{s}\) perpendicular to the Earth's magnetic field. If the field strength is \(0.500 \cdot 10^{-4} \mathrm{~T}\), what is the radius of the electron's circular path?

Initially at rest, a small copper sphere with a mass of \(3.00 \cdot 10^{-6} \mathrm{~kg}\) and a charge of \(5.00 \cdot 10^{-4} \mathrm{C}\) is accelerated through a \(7000 .-\mathrm{V}\) potential difference before entering a magnetic field of magnitude \(4.00 \mathrm{~T}\), directed perpendicular to its velocity. What is the radius of curvature of the sphere's motion in the magnetic field?

A circular coil with a radius of \(10.0 \mathrm{~cm}\) has 100 turns of wire and carries a current, \(i=100 . \mathrm{mA} .\) It is free to rotate in a region with a constant horizontal magnetic field given by \(\vec{B}=(0.0100 \mathrm{~T}) \hat{x}\). If the unit normal vector to the plane of the coil makes an angle of \(30.0^{\circ}\) with the horizontal, what is the magnitude of the net magnetic torque acting on the coil? 27.61 At \(t=0\) an electron crosses the positive \(y\) -axis (so \(x=0\) ) at \(60.0 \mathrm{~cm}\) from the origin with velocity \(2.00 \cdot 10^{5} \mathrm{~m} / \mathrm{s}\) in the positive \(x\) -direction. It is in a uniform magnetic field. a) Find the magnitude and the direction of the magnetic field that will cause the electron to cross the \(x\) -axis at \(x=60.0 \mathrm{~cm}\). b) What work is done on the electron during this motion? c) How long will the trip take from \(y\) -axis to \(x\) -axis?

It would be mathematically possible, for a region with zero current density, to define a scalar magnetic potential analogous to the electrostatic potential: \(V_{B}(\vec{r})=-\int_{\vec{r}_{0}}^{\vec{r}} \vec{B} \cdot d \vec{s},\) or \(\vec{B}(\vec{r})=-\nabla V_{B}(\vec{r}) .\) However, this has not been done. Explain why not.

A magnetic field is oriented in a certain direction in a horizontal plane. An electron moves in a certain direction in the horizontal plane. For this situation, there a) is one possible direction for the magnetic force on the electron. b) are two possible directions for the magnetic force on the electron. c) are infinite possible directions for the magnetic force on the electron.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free