Chapter 27: Problem 15
A charged particle moves under the influence of an electric field only. Is it possible for the particle to move with a constant speed? What if the electric field is replaced with a magnetic field?
Chapter 27: Problem 15
A charged particle moves under the influence of an electric field only. Is it possible for the particle to move with a constant speed? What if the electric field is replaced with a magnetic field?
All the tools & learning materials you need for study success - in one app.
Get started for freeAn alpha particle \(\left(m=6.6 \cdot 10^{-27} \mathrm{~kg}, q=+2 e\right)\) is accelerated by a potential difference of \(2700 \mathrm{~V}\) and moves in a plane perpendicular to a constant magnetic field of magnitude \(0.340 \mathrm{~T}\), which curves the trajectory of the alpha particle. Determine the radius of curvature and the period of revolution.
A charged particle is moving in a constant magnetic field. State whether each of the following statements concerning the magnetic force exerted on the particle is true or false? (Assume that the magnetic field is not parallel or antiparallel to the velocity.) a) It does no work on the particle. b) It may increase the speed of the particle. c) It may change the velocity of the particle. d) It can act only on the particle while the particle is in motion. e) It does not change the kinetic energy of the particle.
A semicircular loop of wire of radius \(R\) is in the \(x y\) -plane, centered about the origin. The wire carries a current, \(i\), counterclockwise around the semicircle, from \(x=-R\) to \(x=+R\) on the \(x\) -axis. A magnetic field, \(\vec{B}\), is pointing out of the plane, in the positive \(z\) -direction. Calculate the net force on the semicircular loop.
In your laboratory, you set up an experiment with an electron gun that emits electrons with energy of \(7.50 \mathrm{keV}\) toward an atomic target. What deflection (magnitude and direction) would Earth's magnetic field \((0.300 \mathrm{G})\) produce in the beam of electrons if the beam is initially directed due east and covers a distance of \(1.00 \mathrm{~m}\) from the gun to the target? (Hint: First calculate the radius of curvature, and then determine how far away from a straight line the electron beam has deviated after \(1.00 \mathrm{~m}\).)
A 30 -turn square coil with a mass of \(0.250 \mathrm{~kg}\) and a side length of \(0.200 \mathrm{~m}\) is hinged along a horizontal side and carries a 5.00 -A current. It is placed in a magnetic field pointing vertically downward and having a magnitude of \(0.00500 \mathrm{~T}\). Determine the angle that the plane of the coil makes with the vertical when the coil is in equilibrium. Use \(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.