Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A magnetic field is oriented in a certain direction in a horizontal plane. An electron moves in a certain direction in the horizontal plane. For this situation, there a) is one possible direction for the magnetic force on the electron. b) are two possible directions for the magnetic force on the electron. c) are infinite possible directions for the magnetic force on the electron.

Short Answer

Expert verified
Answer: There are two possible directions for the magnetic force on the electron.

Step by step solution

01

Understand the nature of magnetic force

Magnetic force is experienced by charged particles like electrons, moving in a magnetic field. The force is given by the formula F = q(v × B), where F is the force vector, q is the electric charge, v is the velocity vector of the particle, and B is the magnetic field vector. Here, the direction of the magnetic force is given by the cross product (v × B), which means that the magnetic force will always act perpendicular to both the velocity vector and the magnetic field vector.
02

Identify the plane of motion for the electron

According to the problem, both the electron's motion and the magnetic field are in a horizontal plane.
03

Determine the direction of the magnetic force on the electron

Since the magnetic force is perpendicular to the plane formed by the velocity vector and the magnetic field vector, and both of these vectors lie in the horizontal plane, the only way for the magnetic force vector to be perpendicular to this plane is to point in either an upward or downward direction (vertically). Therefore, there are only two possible directions for the magnetic force to act on the electron.
04

Choose the correct option

Based on our analysis, the correct answer is: b) there are two possible directions for the magnetic force on the electron.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A particle with a charge of \(+10.0 \mu \mathrm{C}\) is moving at \(300 \cdot \mathrm{m} / \mathrm{s}\) in the positive \(z\) -direction. a) Find the minimum magnetic field required to keep it moving in a straight line at constant speed if there is a uniform electric field of magnitude \(100 . \mathrm{V} / \mathrm{m}\) pointing in the positive \(y\) -direction. b) Find the minimum magnetic field required to keep the particle moving in a straight line at constant speed if there is a uniform electric field of magnitude \(100 . \mathrm{V} / \mathrm{m}\) pointing in the positive \(z\) -direction.

A square loop of wire of side length \(\ell\) lies in the \(x y\) -plane, with its center at the origin and its sides parallel to the \(x\) - and \(y\) -axes. It carries a current, \(i\), in the counterclockwise direction, as viewed looking down the \(z\) -axis from the positive direction. The loop is in a magnetic field given by \(\vec{B}=\left(B_{0} / a\right)(z \hat{x}+x \hat{z}),\) where \(B_{0}\) is a constant field strength, \(a\) is a constant with the dimension of length, and \(\hat{x}\) and \(\hat{z}\) are unit vectors in the positive \(x\) -direction and positive \(z\) -direction. Calculate the net force on the loop.

Initially at rest, a small copper sphere with a mass of \(3.00 \cdot 10^{-6} \mathrm{~kg}\) and a charge of \(5.00 \cdot 10^{-4} \mathrm{C}\) is accelerated through a \(7000 .-\mathrm{V}\) potential difference before entering a magnetic field of magnitude \(4.00 \mathrm{~T}\), directed perpendicular to its velocity. What is the radius of curvature of the sphere's motion in the magnetic field?

A proton, moving in negative \(y\) -direction in a magnetic field, experiences a force of magnitude \(F\), acting in the negative \(x\) -direction. a) What is the direction of the magnetic field producing this force? b) Does your answer change if the word "proton" in the statement is replaced by “electron"?

A copper wire with density \(\rho=8960 \mathrm{~kg} / \mathrm{m}^{3}\) is formed into a circular loop of radius \(50.0 \mathrm{~cm} .\) The cross-sectional area of the wire is \(1.00 \cdot 10^{-5} \mathrm{~m}^{2},\) and a potential difference of \(0.012 \mathrm{~V}\) is applied to the wire. What is the maximum angular acceleration of the loop when it is placed in a magnetic field of magnitude \(0.25 \mathrm{~T}\) ? The loop rotates about an axis through a diameter.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free