Chapter 26: Problem 3
A circuit consists of a source of emf, a resistor, and a capacitor, all connected in series. The capacitor is fully charged. How much current is flowing through it? a) \(i=V / R\) b) zero c) neither (a) nor (b)
Chapter 26: Problem 3
A circuit consists of a source of emf, a resistor, and a capacitor, all connected in series. The capacitor is fully charged. How much current is flowing through it? a) \(i=V / R\) b) zero c) neither (a) nor (b)
All the tools & learning materials you need for study success - in one app.
Get started for freeA circuit consists of two \(100 .-\mathrm{k} \Omega\) resistors in series with an ideal \(12.0-\mathrm{V}\) battery. a) Calculate the potential drop across one of the resistors. b) A voltmeter with internal resistance \(10.0 \mathrm{M} \Omega\) is connected in parallel with one of the two resistors in order to measure the potential drop across the resistor. By what percentage will the voltmeter reading deviate from the value you determined in part (a)? (Hint: The difference is rather small so it is helpful to solve algebraically first to avoid a rounding error.)
A capacitor bank is designed to discharge 5.0 J of energy through a \(10.0-\mathrm{k} \Omega\) resistor array in under \(2.0 \mathrm{~ms}\) To what potential difference must the bank be charged, and what must the capacitance of the bank be?
An ammeter with an internal resistance of \(53 \Omega\) measures a current of \(5.25 \mathrm{~mA}\) in a circuit containing a battery and a total resistance of \(1130 \Omega\). The insertion of the ammeter alters the resistance of the circuit, and thus the measurement does not give the actual value of the current in the circuit without the ammeter. Determine the actual value of the current.
A battery has \(V_{\text {emf }}=12.0 \mathrm{~V}\) and internal resistance \(r=1.00 \Omega\). What resistance, \(R,\) can be put across the battery to extract \(10.0 \mathrm{~W}\) of power from it?
Two light bulbs for use at \(110 \mathrm{~V}\) are rated at \(60 \mathrm{~W}\) and \(100 \mathrm{~W}\), respectively. Which has the filament with lower resistance?
What do you think about this solution?
We value your feedback to improve our textbook solutions.