Chapter 25: Problem 80
Before bendable tungsten filaments were developed, Thomas Edison used carbon filaments in his light bulbs. Though carbon has a very high melting temperature \(\left(3599^{\circ} \mathrm{C}\right)\) its sublimation rate is high at high temperatures. So carbonfilament bulbs were kept at lower temperatures, thereby rendering them dimmer than later tungsten-based bulbs. A typical carbon-filament bulb requires an average power of \(40 \mathrm{~W}\), when 110 volts is applied across it, and has a filament temperature of \(1800^{\circ} \mathrm{C}\). Carbon, unlike copper, has a negative temperature coefficient of resistivity: \(\alpha=-0.0005^{\circ} \mathrm{C}^{-1}\) Calculate the resistance at room temperature \(\left(20^{\circ} \mathrm{C}\right)\) of this carbon filament.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.