Chapter 25: Problem 61
A potential difference of \(V=0.500 \mathrm{~V}\) is applied across a block of silicon with resistivity \(8.70 \cdot 10^{-4} \Omega \mathrm{m}\). As indicated in the figure, the dimensions of the silicon block are width \(a=2.00 \mathrm{~mm}\) and length \(L=15.0 \mathrm{~cm} .\) The resistance of the silicon block is \(50.0 \Omega\), and the density of charge carriers is \(1.23 \cdot 10^{23} \mathrm{~m}^{-3}\) Assume that the current density in the block is uniform and that current flows in silicon according to Ohm's Law. The total length of 0.500 -mm-diameter copper wire in the circuit is \(75.0 \mathrm{~cm},\) and the resistivity of copper is \(1.69 \cdot 10^{-8} \Omega \mathrm{m}\) a) What is the resistance, \(R_{w}\) of the copper wire? b) What are the direction and the magnitude of the electric current, \(i\), in the block? c) What is the thickness, \(b\), of the block? d) On average, how long does it take an electron to pass from one end of the block to the other? \(?\) e) How much power, \(P\), is dissipated by the block? f) In what form of energy does this dissipated power appear?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.