Chapter 25: Problem 28
A copper wire has a diameter \(d_{\mathrm{Cu}}=0.0500 \mathrm{~cm}\) is \(3.00 \mathrm{~m}\) long, and has a density of charge carriers of \(8.50 \cdot 10^{28}\) electrons \(/ \mathrm{m}^{3}\). As shown in the figure, the copper wire is attached to an equal length of aluminum wire with a diameter \(d_{\mathrm{A} \mathrm{I}}=0.0100 \mathrm{~cm}\) and density of charge carriers of \(6.02 \cdot 10^{28}\) electrons \(/ \mathrm{m}^{3}\). A current of 0.400 A flows through the copper wire. a) What is the ratio of the current densities in the two wires, \(J_{\mathrm{Cu}} / J_{\mathrm{Al}} ?\) b) What is the ratio of the drift velocities in the two wires, \(v_{\mathrm{d}-\mathrm{Cu}} / v_{\mathrm{d}-\mathrm{Al}} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.