Chapter 25: Problem 23
Show that the drift speed of free electrons in a wire does not depend on the cross-sectional area of the wire.
Chapter 25: Problem 23
Show that the drift speed of free electrons in a wire does not depend on the cross-sectional area of the wire.
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the power supplied to the circuit in the figure by the battery with internal resistance is maximum when the resistance of the resistor in the circuit, \(R\), is equal to \(R_{i}\). Determine the power supplied to \(R\). For practice, calculate the power dissipated by a \(12.0-\mathrm{V}\) battery with an internal resistance of \(2.00 \Omega\) when \(R=1.00 \Omega, R=2.00 \Omega,\) and \(R=3.00 \Omega\)
What would happen to the drift velocity of electrons in a wire if the resistance due to collisions between the electrons and the atoms in the crystal lattice of the metal disappeared?
A copper wire has a diameter \(d_{\mathrm{Cu}}=0.0500 \mathrm{~cm}\) is \(3.00 \mathrm{~m}\) long, and has a density of charge carriers of \(8.50 \cdot 10^{28}\) electrons \(/ \mathrm{m}^{3}\). As shown in the figure, the copper wire is attached to an equal length of aluminum wire with a diameter \(d_{\mathrm{A} \mathrm{I}}=0.0100 \mathrm{~cm}\) and density of charge carriers of \(6.02 \cdot 10^{28}\) electrons \(/ \mathrm{m}^{3}\). A current of 0.400 A flows through the copper wire. a) What is the ratio of the current densities in the two wires, \(J_{\mathrm{Cu}} / J_{\mathrm{Al}} ?\) b) What is the ratio of the drift velocities in the two wires, \(v_{\mathrm{d}-\mathrm{Cu}} / v_{\mathrm{d}-\mathrm{Al}} ?\)
If the current through a resistor is increased by a factor of \(2,\) how does this affect the power that is dissipated? a) It decreases by a factor of 4 . b) It increases by a factor of 2 . c) It decreases by a factor of 8 . d) It increases by a factor of 4 .
A thundercloud similar to the one described in Example 24.3 produces a lightning bolt that strikes a radio tower. If the lightning bolt transfers \(5.00 \mathrm{C}\) of charge in about \(0.100 \mathrm{~ms}\) and the potential remains constant at \(70.0 \mathrm{MV}\), find (a) the average current, (b) the average power, (c) the total energy, and (d) the effective resistance of the air during the lightning strike.
What do you think about this solution?
We value your feedback to improve our textbook solutions.