Chapter 25: Problem 22
A charged-particle beam is used to inject a charge, \(Q_{0}\), into a small, irregularly shaped region (not a cavity, just some region within the solid block) in the interior of a block of ohmic material with conductivity \(\sigma\) and permittivity \(\epsilon\) at time \(t=0\). Eventually, all the injected charge will move to the outer surface of the block, but how quickly? a) Derive a differential equation for the charge, \(Q(t)\), in the injection region as a function of time. b) Solve the equation from part (a) to find \(Q(t)\) for all \(t \geq 0\). c) For copper, a good conductor, and for quartz (crystalline \(\mathrm{SiO}_{2}\) ), an insulator, calculate the time for the charge in the injection region to decrease by half. Look up the necessary values. Assume that the effective "dielectric constant" of copper is \(1.00000 .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.